1. Shanghai Aerospace Electronic Technology Institute, Shanghai 201109, China
2. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
Abstract:In view of the high precision positioning requirements of the new generation of satellite navigation system of china, the onboard hydrogen maser has been widely used in the system as a frequency reference because of its excellent long-term stability, drift rate and temperature characteristics. The passive onboard hydrogen maser with dual-frequency scheme consists of physical part and circuit part. The microwave excitation signal excites the microwave cavity of the physical part and generates the error signal of cavity frequency and the error signal of high stability crystal oscillator. For how to extract and process these two kinds of error signal, one separation scheme of amplitude modulation signal by the same time sequence synchronization of error signal and detection signal is proppsed. At the same time, the crystal oscillator error signals are sampled and maintained to realize the downloading of the telemetry parameters of hydrogen maser's locking.
赵广东,陈鹏飞,刘杰,黄奕,李思衡. 一种基于星载氢钟误差信号提取的实现方法[J]. 计量学报, 2021, 42(2): 239-244.
ZHAO Guang-dong,CHEN Peng-fei,LIU Jie,HUANG Yi,LI Si-heng. One Method of the Extraction of the Error Signal Based on the Onboard Hydrogen Maser. Acta Metrologica Sinica, 2021, 42(2): 239-244.
[1]帅涛, 谢勇辉. 导航卫星星载氢原子钟[J]. 科学, 2016, 68 (5):11-15.
Shuai T, Xie Y H. Onboard Hydrogen Maser For Navigation Satellite[J]. Science, 2016, 68 (5): 11-15.
[2]翟造成. 我国氢钟研制现状与用于卫星导航的可行性[J]. 宇航计测技术, 2003,10 (5): 1-9.
Zhai Z C. The Research Status of Domestic Hydrogen Masers and Their Application Prospects for Satellite Positioning System[J]. Journal of Astronautic Metrology and Measuremen, 2003, 10(5):1-9.
[3]翟造成, 李玉莹, 刘铁新. 氢原子钟的空间应用前景[J]. 空间电子技术, 2011, (4): 55-60.
Zhai Z C, Li Y Y, Liu T X. The application perspective of hydrogen atomic clock in space[J]. Space Electronic Technology, 2011, (4): 55-60.
[4]李玉莹, 刘铁新, 陈文星. 被动星氢钟流量变化对长期频率稳定度的影响分析[J]. 时间频率学报, 2012, 35 (1): 6-11.
Li Y Y, Liu T X, Chen W X. Influence of flow change on long-term frequency stability of passive hydrogen maser[J]. Journal of Time and Frequency, 2012, 35 (1): 6-11.
[5]郑贺斐, 李晶, 冯克明, 等. 被动型氢原子钟单频调制的鉴频特性研究[J]. 中国激光. 2018, 45 (3): 0311001-0311008.
Zheng H F, Li J, Feng K M, et al. Frequency Discrimination for Passive Hydrogen Maser Based on Single Frequency Modulation[J]. Chinese Journal of Lasers, 2018, 45 (3): 0311001-0311008.
[6]李变, 屈俐俐, 陈永奇. 氢钟在守时钟组配置中的应用研究[J]. 宇航计测技术. 2018, 38 (5): 43-47.
Li B, Qu L L, Chen Y Q. Study on the Application of Hydrogen Maser in Clock Allocation[J]. Journal of Astronautic Metrology and Measurement, 2018, 38 (5): 43-47.
[7]曲豹创, 陈从颜, 刘铁新, 等. 用于被动型氢钟的高精度控制器设计[J]. 宇航计测技术. 2010, 30 (3): 1-5.
Qu B C, Chen C Y, Liu T X, et al. Design of Controller used in Passive Hydrogen Maser[J]. Journal of Astronautic Metrology and Measurement, 2010, 30 (3) :1-5.
[8]王国瑞, 杜燕, 李锡瑞. 氢脉泽调制技术和研究[J]. 天文研究与技术. 2018, 15 (4): 473-478.
Wang G R, Du Y, Li X R. The Technology and Research of Hydrogen Maser Modulation[J]. Astronomical Research And Technology, 2018, 15 (4): 473-478.
[9]宋会杰, 董绍武, 王正明, 等. NTSC守时氢钟性能分析[J]. 天文学报. 2015, 56 (6): 628-636.
Song H J, Dong S W, Wang Z M, et al. Analysis of NTSCs Timekeeping Hydrogen Masers[J]. Acta Astronomica Sinica, 2015, 56 (6): 628-636.
[10]吴智斌, 赵军, 李冰, 等. 氢钟频移校准与相位无损切换[J]. 无线电工程. 2018, 48 (4): 288-292.
Wu Z B, Zhao J, Li B, et al. Frequency Offset Calibration and Phase Lossless Switching for Hydrogen-maser. Clocks[J]. Radio Engineering, 2018, 48 (4): 288-292.
[11]朱江淼, 陈烨, 高源, 等. 原子钟钟差预测不确定度的建模与分析[J]. 计量学报. 2019, 40 (4): 714-720.
Zhu J M, Chen Y, Gao Y, et al. Modeling and Analysis of Prediction Uncertainty of Clock Difference in Atomic Clock[J]. Acta Metrologica Sinica, 2019, 40 (4): 714-720.
[12]沈婷梅, 杨同敏, 阎栋梁. 高性能铷原子钟频率长期特性参量估值算法研究[J]. 计量学报. 2019, 40 (5): 900-903.
Shen T M, Yang T M, Yan D L. Long-term Parameter Estimation of High Performance Rubidium Atomic Clocks[J]. Acta Metrologica Sinica. 2019, 40 (5): 900-903.