2025年05月11日 星期日 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2021, Vol. 42 Issue (1): 20-28    DOI: 10.3969/j.issn.1000-1158.2021.01.04
  光学计量 本期目录 | 过刊浏览 | 高级检索 |
融合残差及通道注意力机制的单幅图像去雨方法
张世辉1,2,闫晓蕊1,桑榆1
1.燕山大学信息科学与工程学院, 河北 秦皇岛 066004
2.河北省计算机虚拟技术与系统集成重点实验室, 河北 秦皇岛 066004
Single Image Rain Removal Method by Fusing Residual and Channel Attention Mechanism
ZHANG Shi-hui1,2,YAN Xiao-rui1,SANG Yu1
1. School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao, Hebei 066004, China
全文: PDF (4567 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了去除雨天图像上附着的雨滴并恢复图像的清晰度,提出一种基于深度学习思想结合图像增强技术融合残差及通道注意力机制来实现的单幅图像去雨方法。首先,利用导向滤波将有雨图像分解为平滑基本层和高频细节层;其次,提出自适应Gamma校正算法增强平滑基本层以提高对比度;然后,构建融合残差块和通道注意力机制的深度神经网络实现高频细节层去雨;最后,将去雨后的高频细节层与增强后的平滑基本层融合实现单幅图像去雨功能。实验结果表明:与具有代表性的单幅图像去雨方法相比,所提方法效果较好并可保留更多的图像细节信息。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张世辉
闫晓蕊
桑榆
关键词 计量学单幅图像去雨图像处理压缩和激励残差网络注意力机制深度学习Gamma校正    
Abstract:In order to remove the raindrops and restore the image sharpness,a single image rain removal method based on depth learning and image enhancement technology combined with residual and channel attention mechanism is proposed.Firstly, the rainy image is decomposed into the smooth base layer and the high-frequency detail layer by using the guided filter. Secondly,an adaptive gamma correction algorithm is proposed to enhance the smooth base layer to improve contrast. Thirdly, the deep neural network with residual block and the channel attention mechanism is constructed to remove rain in the high-frequency detail layer. Finally, the high-frequency detail layer after rain removal is combined with the enhanced smooth base layer to realize the single image rain removal. The experimental results show that compared with the representative single image rain removal method, the proposed method works well and can retain more image detail information.
Key wordsmetrology    single image rain removal    image processing    squeeze and excitation residual network    attention mechanism    deep learning    Gamma correction
收稿日期: 2019-10-11      发布日期: 2021-01-19
PACS:  TB96  
基金资助:国家自然科学基金(61379065);河北省自然科学基金(F2019203285)
通讯作者: 张世辉     E-mail: sshhzz@ysu.edu.cn
作者简介: 张世辉(1973-),男,河北赞皇人,燕山大学教授,博士生导师,主要从事视觉信息处理、模式识别方面的研究。Email:sshhzz@ysu.edu.cn
引用本文:   
张世辉,闫晓蕊,桑榆. 融合残差及通道注意力机制的单幅图像去雨方法[J]. 计量学报, 2021, 42(1): 20-28.
ZHANG Shi-hui,YAN Xiao-rui,SANG Yu. Single Image Rain Removal Method by Fusing Residual and Channel Attention Mechanism. Acta Metrologica Sinica, 2021, 42(1): 20-28.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2021.01.04     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2021/V42/I1/20
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn