Abstract:Prediction method for two-phase flow regime and its parameter based on particle swarm optimization extreme learning machine (PSO-ELM) and electrical capacitance tomography is presented. Firstly, the weights of extreme learning machine are optimized using particle swarm optimization algorithm, and then particle swarm optimization extreme learning machine algorithm is adopted to identify four typical oil-gas flow regimes. Secondly, the parameters of the four flow regimes are predicted by particle swarm optimization extreme learning machine algorithm. Finally, simulation experiments are carried out and the results show that particle swarm optimization extreme learning machine algorithm needs less hidden layer nodes and has higher accuracy for flow regime identification compared with extreme learning machine algorithm. The correct identification rate is 100%, and the maximum relative error for the four flow regimes is 5.24%.
[1]张立峰. 压缩感知在电容层析成像中的应用 [J]. 北京航空航天大学学报, 2017, 43(11): 2316-2321.
Zhang L F. Compressed sensing application to electrical capacitance tomography [J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2316-2321.
[2]张立峰, 宋亚杰. 基于梯度投影稀疏重建算法的电容层析成像图像重建 [J]. 计量学报, 2019, 40(4): 631-635.
Zhang L F, Song Y J. Image Reconstruction for Electrical Capacitance Tomography Based on Barzilai-Borwein Gradient Projection for Sparse Reconstruction Algorithm[J]. Acta Metrologica Sinica, 2019, 40(4): 631-635.
[3]Meribout M, Saied I M. Real-Time Two-Dimensional Imaging of Solid Contaminants in Gas Pipelines Using an Electrical Capacitance Tomography System [J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3989-3996.
[4]孔银. 电容层析成像技术图像重建算法的研究[D]. 哈尔滨:哈尔滨理工大学, 2017.
[5]张立峰, 王化祥. 基于SVM及电容层析成像的两相流流型识别 [J]. 仪器仪表学报, 2009, 30(4): 812-816.
Zhang L F, Wang H X. Identification of two-phase flow regime based on support vector machine and electrical capacitance tomography technique [J]. Chinese Journal of Scientific Instrument, 2009, 30(4): 812-816.
[6]Huang G B, Zhu Q Y, Siew C H. Extreme learning machine: a new learning scheme of feedforward neural networks [J]. IEEE International Joint Conference on Neural Networks, 2004, 2: 985-990.
[7]Huang G B, Zhu Q Y, Siew C H. Extreme learning machine: Theory and applications [J]. Neurocomputing, 2006, 70(1): 489-501.
[8]何群, 王红, 江国乾, 等. 基于相关主成分分析和极限学习机的风电机组主轴承状态监测研究 [J]. 计量学报, 2019, 39(1): 89-93.
He Q, Wang H, Jiang G Q, et al. Research of Wind Turbine Main Bearing Condition Monitoring Based on Correlation PCA and ELM [J]. Acta Metrologica Sinica, 2018, 39(1): 89-93.
[9]吴忠强,尚梦瑶,申丹丹,等. 基于BSA-RELM的纯电动汽车锂离子电池SOC估计[J]. 计量学报, 2019, 40(4): 693-699.
Wu Z Q, Shang M Y, Shen D D, et al. Estimation of SOC of Li-ion Battery in Pure Electric Vehicle by BSA-RELM[J]. Acta Metrologica Sinica, 2019, 40(4): 693-699.
[10]毛羽, 毛力, 杨弘, 等. 改进人工蜂群优化的极限学习机 [J]. 传感器与微系统, 2018, 37(4): 116-120.
Mao Y, Mao L, Yang H, et al. Extreme learning machine optimized by improved ABC [J]. Transducer and Microsystem Technologies, 2018, 37(4): 116-120.
[11]Chu Z, Ye M, Jing C. Adaptive reactionless control strategy via the PSO-ELM algorithm for free-floating space robots during manipulation of unknown objects [J]. Nonlinear Dynamics, 2018, 91(2): 1321-1335.
[12]Chatterjee S, Sarkar S, Hore S, et al. Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings [J]. Neural Computing & Applications, 2017, 28(8): 2005-2016.
[13]Bonyadi M R, Michalewicz Z. Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review [J]. Evolutionary Computation, 2017, 25(1): 1-54.
[14]刘彬, 赵朋程, 高伟, 等. 基于粒子群算法与连续型深度信念网络的水泥熟料游离氧化钙预测 [J]. 计量学报, 2018, 39(3): 134-138.
Liu B, Zhao P C, Gao W, et al. Prediction of Cement fCaO Based on Particle Swarm Optimization and Continuous Deep Belief Network [J]. Acta Metrologica Sinica, 2018, 39(3): 134-138.
[15]李婉华, 陈羽中, 郭昆, 等. 基于改进粒子群优化的并行极限学习机 [J]. 模式识别与人工智能, 2016, 29(9): 840-849.
Li W H, Chen Y Z, Guo K, et al. Parallel Extreme Learning Machine Based on Improved Particle Swarm Optimization [J]. Pattern Recognition and Artificial Intelligence, 2016, 29(9): 840-849.
[16]高斐, 李洪儒, 许葆华. 基于ICPSO优化的极限学习机在故障诊断中的应用 [J]. 中国机械工程, 2013, 24(20): 2753-2757.
Gao F, Li H R, Xu B H. Applications of Extreme Learning Machine Optimized by ICPSO in Fault Diagnosis [J]. China Mechanical Engineering, 2013, 24(20): 2753-2757.