2025年05月17日 星期六 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2020, Vol. 41 Issue (12): 1488-1493    DOI: 10.3969/j.issn.1000-1158.2020.12.07
  流量计量 本期目录 | 过刊浏览 | 高级检索 |
基于粒子群优化极限学习机及电容层析成像的两相流流型及其参数预测
张立峰,朱炎峰
华北电力大学 自动化系, 河北 保定 071003
Two-phase Flow Regime and its Parameter Prediction Based on Particle Swarm Optimization Extreme Learning Machine and Electrical Capacitance Tomography
ZHANG Li-feng,ZHU Yan-feng
Department of Automation, North China Electric Power University, Baoding, Hebei 071003, China
全文: PDF (842 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 提出了一种基于粒子群优化极限学习机及电容层析成像的两相流流型辨识及其参数预测方法。首先,通过粒子群优化极限学习机的连接权值,并使用粒子群优化极限学习机算法对4种典型的油-气两相流流型进行辨识;其次,使用粒子群优化极限学习机算法对流型的参数进行预测;最后进行了仿真实验,结果表明,与极限学习机算法相比,粒子群优化极限学习机算法所需隐层节点数更少,流型辨识率更高,其正确辨识率达100%,对4种流型参数预测的最大相对误差为5.24%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张立峰
朱炎峰
关键词 计量学油-气两相流流型辨识粒子群极限学习机电容层析成像参数预测    
Abstract:Prediction method for two-phase flow regime and its parameter based on particle swarm optimization extreme learning machine (PSO-ELM) and electrical capacitance tomography is presented. Firstly, the weights of extreme learning machine are optimized using particle swarm optimization algorithm, and then particle swarm optimization extreme learning machine algorithm is adopted to identify four typical oil-gas flow regimes. Secondly, the parameters of the four flow regimes are predicted by particle swarm optimization extreme learning machine algorithm. Finally, simulation experiments are carried out and the results show that particle swarm optimization extreme learning machine algorithm needs less hidden layer nodes and has higher accuracy for flow regime identification compared with extreme learning machine algorithm. The correct identification rate is 100%, and the maximum relative error for the four flow regimes is 5.24%.
Key wordsmetrology    oil-gas two-phase flow    flow regime identification    particle swarm    extreme learning machine    electrical capacitance tomography    parameter prediction
收稿日期: 2019-04-08      发布日期: 2020-12-08
PACS:  TP937  
作者简介: 张立峰(1979-),男,江西临川人,华北电力大学副教授,博士,主要从事多相流检测及电学层析成像技术方面的研究。Email: lifeng.zhang@ncepu.edu.cn
引用本文:   
张立峰,朱炎峰. 基于粒子群优化极限学习机及电容层析成像的两相流流型及其参数预测[J]. 计量学报, 2020, 41(12): 1488-1493.
ZHANG Li-feng,ZHU Yan-feng. Two-phase Flow Regime and its Parameter Prediction Based on Particle Swarm Optimization Extreme Learning Machine and Electrical Capacitance Tomography. Acta Metrologica Sinica, 2020, 41(12): 1488-1493.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2020.12.07     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I12/1488
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn