2025年05月10日 星期六 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2020, Vol. 41 Issue (12): 1536-1543    DOI: 10.3969/j.issn.1000-1158.2020.12.15
  电磁学计量 本期目录 | 过刊浏览 | 高级检索 |
基于改进蝗虫优化算法的光伏电池模型参数辨识
吴忠强,申丹丹,尚梦瑶,戚松崎
燕山大学电气工程学院,河北 秦皇岛 066004
Parameter Identification of Photovoltaic Cell Model Based on Improved Grasshopper Optimization Algorithm
WU Zhong-qiang,SHEN Dan-dan,SHANG Meng-yao,QI Song-qi
College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
全文: PDF (1222 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对蝗虫优化算法容易陷入局部最优、收敛精度不足等缺点,提出一种改进蝗虫优化算法。将混沌算法与蝗虫优化算法融合,对蝗虫优化算法进行混沌初始化,改善初始种群质量;再引入差分进化算法的差分策略,通过变异、交叉和选择过程,维持种群的多样性,增大算法跳出局部最优的可能性,从而使算法能搜索到更好的解;在个体更新部分引入了粒子群算法的思想,以当前的最优个体为目标进行个体位置更新,加快算法寻优速度。将改进蝗虫优化算法用于多晶硅太阳能电池模型参数的辨识中,并通过与其它智能优化算法的比较,验证了改进蝗虫算法辨识太阳能电池参数的有效性和优越性。通过实验验证了改进蝗虫优化算法在不同光照下对太阳能电池参数的辨识效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴忠强
申丹丹
尚梦瑶
戚松崎
关键词 计量学光伏电池参数辨识改进蝗虫优化算法差分进化算法混沌初始化    
Abstract:To overcome the shortcomings of grasshopper optimization algorithm, such as easily falling into local optimum and insufficient convergence accuracy, an improved grasshopper optimization algorithm (IGOA) is proposed. Combing grasshopper optimization algorithm with chaotic algorithm, chaotic initialization is carried out to improve the quality of initial population. Then the differential strategy of differential evolution algorithm is introduced to maintain the diversity of the population through the process of mutation, crossover and selection, and increase the possibility of the algorithm jumping out of the local optimum, so that the algorithm can search for better solutions. The method of particle swarm optimization is introduced in the part of position updating. To accelerate the convergence speed of the algorithm, the current particle optimum value is used as the target. IGOA is used to identify the parameters of polycrystalline silicon solar cells. Compared with other intelligent optimization algorithms, the effectiveness and superiority of IGOA are verified. The effectiveness of IGOA to identify parameters of solar cell under different illumination is also verified by experiments.
Key wordsKey words: metrology    photovoltaic cell    parameter identification    improved grasshopper optimization algorithm    differential evolution algorithm    chaotic initialization
收稿日期: 2019-02-13      发布日期: 2020-12-08
PACS:  TB971  
基金资助:河北省自然科学基金(F2020203014)
作者简介: 吴忠强(1966-),男,上海人,燕山大学教授,从事新能源发电系统状态监测等方面的研究。Email:mewzq@163.com
引用本文:   
吴忠强,申丹丹,尚梦瑶,戚松崎. 基于改进蝗虫优化算法的光伏电池模型参数辨识[J]. 计量学报, 2020, 41(12): 1536-1543.
WU Zhong-qiang,SHEN Dan-dan,SHANG Meng-yao,QI Song-qi. Parameter Identification of Photovoltaic Cell Model Based on Improved Grasshopper Optimization Algorithm. Acta Metrologica Sinica, 2020, 41(12): 1536-1543.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2020.12.15     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I12/1536
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn