2025年04月10日 星期四 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2020, Vol. 41 Issue (10): 1267-1272    DOI: 10.3969/j.issn.1000-1158.2020.10.14
  力学计量 本期目录 | 过刊浏览 | 高级检索 |
基于LCD-LLTSA的电动汽车电机轴承故障特征频率提取
史素敏1,杨春长2,王斐3
1. 商丘学院 机械与电气信息学院, 河南 商丘 476000
2. 32148部队, 河南 驻马店 463000
3. 陆军工程大学 一系, 河北 石家庄 050003
Electric Car Motor Bearing Fault Feature Frequency Extracting Method Based on LCD and LLTSA
SHI Su-min1,YANG Chun-chang2,WANG Fei3
1. College of Mechanical and Electrical Information, Shangqiu College, Shangqiu, Henan 476000, China
2. The 32148 Forces, Zhumadian, Henan 463000, China
3. First Department,Army Engineering University,  Shijiazhuang, Hebei 050003, China
全文: PDF (741 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为有效提取出电动汽车电机轴承故障特征频率,将局部特征尺度分解、线性局部切空间排列和包络分析进行结合,用于电动汽车电机轴承的故障特征频率的提取。首先利用局部特征尺度分解对电动汽车电机轴承故障信号进行分解,得到若干个内禀尺度分量;然后利用线性局部切空间排列对由内禀尺度分量构成的矩阵进行降维处理,得到低维矩阵并以此进行信号重构;最后对重构信号进行包络谱分析,获得故障特征频率。仿真信号和实验信号的实验结果验证了方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
史素敏
杨春长
王斐
关键词 计量学滚动轴承故障诊断特征频率局部特征尺度分解线性局部切空间排列    
Abstract:In order to extracting electric car motor bearing fault feature frequency effectively, a fault feature frequency extracting method of electric car motor bearing based on local characteristic-scale decomposition (LCD) , linear local tangent space algorithm (LLTSA) and envelope spectrum analysis is introduced. Firstly, electric car bearing original fault signals are decomposed into several intrinsic scale component (ISC) with different frequency band components through LCD. And then, the LLTSA was used to reduce the dimension of the matrix construct by ISC components, and then a new fault signal can obtain by a low dimension matrix which obtained by LLTSA. Finally, the fault frequency can be identified accurately by the envelope spectrum. The experimental results of simulation signal and experiment signal show that the proposed method can identify different state effectively and has a certain superiority.
Key wordsmetrology    rolling bearings    fault diagnosis    feature frequency    local characteristic-scale decomposition    linear local tangent space algorithm
收稿日期: 2018-11-21      发布日期: 2020-10-10
PACS:  TB936  
  TB973  
基金资助:河北省自然科学基金(E2016506003)
作者简介: 史素敏(1987-), 女, 河南安阳人, 商丘学院讲师, 硕士, 主要从事机械设计制造与机电控制研究。Email:shisumin521@163.com
引用本文:   
史素敏,杨春长,王斐. 基于LCD-LLTSA的电动汽车电机轴承故障特征频率提取[J]. 计量学报, 2020, 41(10): 1267-1272.
SHI Su-min,YANG Chun-chang,WANG Fei. Electric Car Motor Bearing Fault Feature Frequency Extracting Method Based on LCD and LLTSA. Acta Metrologica Sinica, 2020, 41(10): 1267-1272.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2020.10.14     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I10/1267
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn