Electric Car Motor Bearing Fault Feature Frequency Extracting Method Based on LCD and LLTSA
SHI Su-min1,YANG Chun-chang2,WANG Fei3
1. College of Mechanical and Electrical Information, Shangqiu College, Shangqiu, Henan 476000, China
2. The 32148 Forces, Zhumadian, Henan 463000, China
3. First Department,Army Engineering University, Shijiazhuang, Hebei 050003, China
Abstract:In order to extracting electric car motor bearing fault feature frequency effectively, a fault feature frequency extracting method of electric car motor bearing based on local characteristic-scale decomposition (LCD) , linear local tangent space algorithm (LLTSA) and envelope spectrum analysis is introduced. Firstly, electric car bearing original fault signals are decomposed into several intrinsic scale component (ISC) with different frequency band components through LCD. And then, the LLTSA was used to reduce the dimension of the matrix construct by ISC components, and then a new fault signal can obtain by a low dimension matrix which obtained by LLTSA. Finally, the fault frequency can be identified accurately by the envelope spectrum. The experimental results of simulation signal and experiment signal show that the proposed method can identify different state effectively and has a certain superiority.
史素敏,杨春长,王斐. 基于LCD-LLTSA的电动汽车电机轴承故障特征频率提取[J]. 计量学报, 2020, 41(10): 1267-1272.
SHI Su-min,YANG Chun-chang,WANG Fei. Electric Car Motor Bearing Fault Feature Frequency Extracting Method Based on LCD and LLTSA. Acta Metrologica Sinica, 2020, 41(10): 1267-1272.
[1]董文智, 张超. 基于EEMD分解和奇异值差分谱理论的轴承故障诊断研究[J].机械强度, 2012, 34(2): 183-189.
Dong W C, Zhang C. Bearing fault diagnosis method based on EEMD and difference specturm theory of signalur value[J].Journal of Mechanical Strength, 2012, 34(2): 183-189.
[2]胥永刚, 孟志鹏, 陆明, 等. 双树复小波和奇异差分谱在滚动轴承故障诊断中的应用[J].振动工程学报, 2013, 26(6): 965-973.
Xu Y G, Meng Z P, Lu M, et al. Application of dual-tree complex wavelet transform and signalur valuedifference spectrum in the rolling bearing fault diagnosis[J].Journal of Vibration Engineeging, 2013, 26(6): 965-973.
[3]陈仁详, 汤宝平, 马靖华. 基于EEMD的振动信号自适应降噪方法[J].振动与冲击, 2012, 31(15):83-86.
Chen R X, Tang B P, Ma J H. Adaptive de-noising method based on ensemble empirical mode decomposition for vibration signal[J].Journal of Vibration and Shock, 2012,31(15): 83-86.
[4]程军圣, 郑近德, 杨宇. 一种新的非平稳信号分析方法—局部特征尺度分解法[J].振动工程学报, 2012, 25(2): 215-220.
Chen J S, Zhen J D, Yang Y. A nonstationary signal analysis approach-the local characteristic-scale decomp-osition method[J].Journal of Vibration Engineering, 2012, 25(2): 215-220.
[5]孟宗,殷娜,李晶. 基于信号稀疏表示和瞬态冲击信号多特征提取的滚动轴承故障诊断[J].计量学报, 2019, 40(5): 855-860.
Meng Z, Yin N, Li J. Fault Diagnosis of Rolling Bearing Based on Sparse Representation of Signals and Transient Impulse Signal Multifeature Extraction[J]. Acta Metrologica Sinica, 2019, 40(5): 855-860.
[6]Lei Y G, Lin J, He Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J].Mechanical Systems and Signal Processing, 2013, 35(1-2): 108-126.
[7]曾鸣, 杨宇, 郑近德, 等. 基于LCD和KNNCH分类算法的齿轮故障诊断方法[J].中国机械工程, 2014, 25(15): 2049-2054.
Zeng M, Yang Y, Zheng J D, et al.Fault diagnosis approach for gears based on LCD and KNNCH classification algorithm[J].China Mechanical Engineering, 2014, 25(15): 2049-2054.
[8]程军圣, 李海龙, 杨宇. 基于内禀尺度分量的自适应时频分析方法[J].中南大学学报(自然科学版), 2013, 44(3): 1425-1430.
Cheng J H, Li H L, Yang Y. Self-adaptive time-frequency analysis method based on intrinsic scale component[J].Journal of Central South University (Science and Technology), 2013, 44(3): 1425-1430.
[9]Zhang T, Yang J, Zhao D, et al. Linear local tangents space alignment and application to face recognition[J].Neurocomputing, 2007, 70: 1547-15 53.
[10]李锋, 汤宝平, 陈法法. 基于线性局部切空间排列维数化简的故障诊断[J].振动与冲击, 2012, 31(13): 36-40.
Li F, Tang B P, Chen F F. Fault diagnosis model based on dimension reduction using linear local tangent space alignment[J].Journal of Vibration and Shock, 2012, 31(13): 36-40.
[11]李峰, 赵洁, 王家序, 等. 判别式正交线性局部切空间排列故障辨识[J].计算机集成制造系统, 2014, 20(1): 173-181.
Li F, Zhao J, Wang J X, et al. Fault diagnosis based on improved semi-supervised locality preserving projections[J].Computer Integrated Manufacturing Systems, 2014, 20(1): 173-181.
[12]苏祖强, 汤宝平, 姚金宝, 等. 基于敏感特征选择与流形学习维数约简的故障诊断[J].振动与冲击, 2014, 33(3):70-75.
Su Z Q, Tang B P, Yao J B, et al. Fault diagnosis method based on sensitive feature selection and manifold learning dimension reduction[J].Journal of Vibration and Shock, 2014, 33(3): 70-75.
[13]向丹, 葛爽. 基于EMD样本熵-LLTSA的故障特征提取方法[J].航空动力学报, 2014, 29(7): 1535-1542.
Xiang D, Ge S. Method of fault feature extraction baDEd on EMD sample entropy and LLTSA[J].Journal of Aerospace Power, 2014, 29(7): 1535-1542.
[14]时培明, 苏晓, 袁丹真, 等. 基于VMD和变尺度多稳随机共振的微弱信号特征提取方法[J].计量学报, 2018, 39(4): 515-520.
Shi P M, Su X, Yuan D Z, et al.A new feature exreation method of weak fault signal based on VMD and Re-scaling multi-stable stochastic resonance[J].Acta Metrologica Sinica, 2018, 39(4): 515-520.
[15]张淑清, 董玉兰, 张立国, 等. 基于均值包络ITD和谱峭度的特征频率提取方法[J].计量学报, 2017, 38(5): 598-601.
Zhang S Q, Dong Y l, Zhang L G, et al.Feature frequency extration method based on mean envelop ITD and spectral kurtosis[J].Acta Metrologica Sinica, 2017, 38(5): 598-601.