Abstract:For nuclear fast response temperature sensor re-test, the calibration facility of temperature sensors dynamic response in flowing water was established. The calibration uncertainty of every factor was evaluated. In the small time region, approximate linearity between voltage and time exists, indicated by oscilloscope. Based on the approximation, uncertainty propagation was realized from temperature to time parameters. Uncertainty evaluation was conducted for a nuclear fast response platinum resistance temperature sensor’s calibration. The result showed that the expanded uncertainty of time constant was U=27ms (k=2). The oscilloscope cursor resolutions of voltage and time are the important factors for the uncertainty. The results can provide reference for the re-test procedure.
刘波,王崇愿,朱鹏飞. 水流环境下温度传感器动态响应测量的不确定度评定[J]. 计量学报, 2020, 41(10): 1240-1244.
LIU Bo,WANG Chong-yuan,ZHU Peng-fei. Uncertainty Evaluation on Temperature Sensor’s Dynamic Response Based on Water Facility. Acta Metrologica Sinica, 2020, 41(10): 1240-1244.
[1]国家技术监督局. JJF 1049-1995 温度传感器动态响应校准[S]. 1995.
[2]张恒, 曾凡超, 文昌俊, 等. 一种高精度薄膜铂电阻温度计测量迟滞性的研究[J]. 计量学报, 2019, 40(6): 1025-1029.
Zhang H, Zeng F C, Wen C J, et al. Research on hysteresis of the high-precision thin-film platinum tesistance thermometers[J]. Acta Metrologica Sinica, 2019, 40(6): 1025-1029.
[3]潘洋, 周力任, 冯建. 一种新型低值宽带无感分流器时间常数测量方法[J]. 计量学报, 2019, 40(6): 946-951.
Pan Y, Zhou L R, Feng J. A new method for the measurement of time constant of low value wide band non-inductance current shunt[J]. Acta Metrologica Sinica, 2019, 40(6): 946-951.
[4]杨新圆, 吕国义, 吴方, 等. 表面温度传感器响应时间测量装置的研究[J]. 计量学报, 2012, 33(z2): 83-85.
Yang X Y, Lv G Y, Wu F, et al. Development of the device for measuring respond time of the surface temperature sensor[J]. Acta Metrologica Sinica, 2012, 33(z2): 83-85.
[5]赵学敏, 王文廉, 李岩峰, 等. 火焰温度场测试中的传感器动态响应研究[J]. 传感技术学报, 2016, 29(3): 368-372.
Zhao X M, Wang W L, Li Y F, et al. Research on dynamic response of temperature sensor during the test of flames temperature flied[J]. Chinese Journal of Sensors and Actuators, 2016, 29(3): 368-372.
[6]吕鹏飞, 裴东兴, 沈大伟. 基于K型热电偶的瞬态测温技术的研究[J]. 传感技术学报, 2014, 27(6): 775-780.
Lü P F, Pei D X, Shen D W. The research of transient thermometry technology based on K-style thermocouple[J]. Chinese Journal of Sensors and Actuators, 2014, 27(6): 775-780.
[7]Wang R, Zhang Z J, Zhao C Y, et al. Research on thermocouple transient thermometry technology based on Labview[J]. Journal of Measurement Science and Instrumentation, 2015, 6(2): 111-115.
[8]Yang Y J, Cai J, Zhang X C, et al. Study of TFTC dynamic character calibration technique[J]. International Journal of Thermophysics, 2011, 32(7): 1479-1484.
[9]Diniz A C G C, de Almeida M E K, Vianna J N S, et al. Methodology for estimating measurement uncertainty in the dynamic calibration of industrial temperature sensors[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(3): 1053-1060.
[10]Ogorevc J, Bojkovski J, Punik I, et al. Dynamic measurements and uncertainty estimation of clinical thermometers using monte carlo method[J]. Measurement Science and Technology, 2016, 27(9): 095001.
[11]廖理. 温度传感器动态响应校准误差及影响因素分析[J]. 航空计测技术, 1997, 18(1): 20-21, 33.
Liao L. Errors and effect factors analysis of temperature sensors dynamic response characteristics calibration[J]. Aviation Metrology & Measurement Technology, 1997, 18(1): 20-21, 33.
[12]朱云龙, 胡鹤鸣, 金仲佳, 等. 基于激光跟踪仪的拖曳水槽车速动态校准[J]. 计量学报, 2019, 40(2): 272-277.
Zhu Y L, Hu H M, Jin Z J, et al. Dynamic calibration of towing tank speed based on laser tracker[J]. Acta Metrologica Sinica, 2019, 40(2): 272-277.