Comparative Study on the Influence of Curvature Radius of Needle Tip on Scratch Test of Hard Film Bonding Force
YU Jie1,TAO Xing-fu2,QIN Lin1,LI Xiao-bing1
1. Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
2. National Institute of Metrology, Beijing 100029, China
Abstract:The film/base bonding force is an important characteristic parameter of the hard film materials. In the adhesion test of the hard film by the scratch method, there are many factors that affect the determination of the critical load Lc, such as the hardness & modulus of the film and the substrate, the surface roughness of the film, and so on. In addition, the test parameters including the instrument stiffness, the scratch rate, the radius of curvature of the indenter, etc., also affect the determination of the critical load Lc. The effects of three indenters with different radius of curvature (20μm, 50μm and 100μm) on the adhesion test of diamond-like carbon films with thickness of submicron were studied. Two differents substrate (i.e. single crystal silicon and 304 steel) were considered. The critical load of the two materials increases, as the increase of the radius of curvature of the tip.
于杰,陶兴付,秦林,李晓兵. 压头曲率半径对硬质薄膜结合力划痕测量影响的比较研究[J]. 计量学报, 2020, 41(9): 1089-1094.
YU Jie,TAO Xing-fu,QIN Lin,LI Xiao-bing. Comparative Study on the Influence of Curvature Radius of Needle Tip on Scratch Test of Hard Film Bonding Force. Acta Metrologica Sinica, 2020, 41(9): 1089-1094.
[1]Vieira L, Lucas F L C, Fisssmer S F, et al. Scratch testing for micro-and nanoscale evaluation of tribocharging in DLC films containing silver nanoparticles using AFM and KPFM techniques[J]. Surface & Coatings Technology, 2014, 260: 205-213.
[2]Kim H H, Cho S H, Kang C G. Evaluation of microstructure and mechanical properties by using nano/micro-indentation and nanoscratch during aging treatment of rheo-forged Al 6061 alloy[J]. Materials Science & Engineering A, 2008, 485(1-2): 272-281.
[3]Youn S W, Kang C G. A study of nanoscratch experiments of the silicon and borosilicate in air[J]. Materials Science & Engineering A, 2004, 384(1-2): 275-283.
[4]张华丽, 张飞虎. 基于Nano Indenter的纳米刻划性能试验研究[J]. 机械与电子, 2006, (3): 3-6.
Zhang H L, Zhang F H. Experimental study on nano-scribeability based on nano indenter[J]. Machinery & Electronics, 2006, (3): 3-6.
[5]张泰华, 杨业敏. 纳米硬度技术的发展和应用[J]. 力学进展, 2002, 32(3): 349-364.
Zhang T H, Yang Y M. Development and application of nanohardness technology[J]. Advances in Mechanics, 2002, 32(3): 349-364.
[6]Bhushan B, Gupta B K, Azarian M H. Nanoindentation, microscratch, friction and wear studies of coatings for contact recording applications[J]. Wear, 1995, 181(95): 743-758.
[7]张智慧. TiO2薄膜的划痕实验及有限元模拟[D]. 呼和浩特:内蒙古工业大学, 2016.
[8]杜军, 王红美, 王鑫. 划痕法结合强度临界载荷值的影响因素分析[J]. 表面技术, 2015, (9): 134-139.
Du J, Wang H M, Wang X. Analysis of factors affecting the critical Load value of scratch method combined with strength[J]. Surface Technology, 2015, (9): 134-139.
[9]石广田, 石宗利, 俞焕然, 等. Ag-Cu/Ti双层膜复合体系结合强度测试方法研究[J]. 兰州大学学报(自科版), 2002, 38(6): 48-53.Shi Guangtian, Shi Zongli, Yu Huanran, et al. Study on the bonding strength test method of Ag-Cu/Ti bilayer composite system[J]. Journal of Lanzhou University (Natural Science Edition), 2002, 38(6): 48-53.
[10]Zaidi H, Djamai A, Chin K J, et al. Characterisation of DLC coating adherence by scratch testing[J]. Tribology International, 2006, 39(2): 124-128.
[11]Sharma N, Kumar N, Dash S, et al. Scratch resistance and tribological properties of DLC coatings under dry and lubrication conditions[J]. Tribology International, 2012, 56(3): 129-140.
[12]Wu W, Xin L, Chen Z, et al. Microstructural Characterization and Mechanical Property of Iridium Coating Produced by Double Glow Plasma[J]. Plasma Chemistry and Plasma Processing, 2011, 31(3): 465-475.
[13]Wu W, Chen Z, Cheng H, et al. Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite[J]. Applied Surface Science, 2011, 257(16): 7295-7304.
[14]李晓兵. 划痕仪的校准及划痕法对薄膜结合强度的测试研究[D]. 太原:太原理工大学, 2017.
[15]黄平, 郭丹, 温诗铸. 界面力学[M]. 北京: 清华大学出版社, 2013.
[16]Popov V L. Contact Mechanics and Friction[M]. Springer Berlin Heidelberg, 2010: 219-250.
[17]阮澍铭. 结构力学(研究生考试指导)[M]. 北京: 中国建材工业出版社, 2003:319.
[18]Godara A, Raabe D, Green S. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications[J]. Acta Biomaterialia, 2007, 3(2): 209-220.
[19]Youn S W, Kang C G. Effect of nanoscratch conditions on both deformation behavior and wet-etching characteristics of silicon (100) surface[J]. Wear, 2006, 261(3-4): 328-337.
[20]彭志坚, 苗赫濯, 齐龙浩, 等. 氮化硅陶瓷刀具表面涂覆高硬耐磨氮化钛涂层研究[J]. 稀有金属材料与工程, 2004, 33(5): 507-511.
Peng Zhijian, Miao Hezhen, Qi Longhao, et al. Study on coating of high hardness and wear resistant titanium nitride coating on silicon nitride ceramic tool[J]. Rare Metal Materials and Engineering, 2004, 33(5): 507-511.
[21]Holmberg K, Laukkanen A, Ronkainen H, et al. A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces[J]. Wear, 2003, 254(3): 278-291.
[22]Larsson M, Olsson M, Hedenqvist P, et al. Mechanisms of coating failure as demonstrated by scratch and indentation testing of TiN coated HSS[J]. Surface Engineering, 2000, 16(5): 436-444.