Calibration of Industrial Robot Parameters Based on Standard Ball Dis-tance Constraints
LU Yi1,GE Wen-qi1,GUO Bin2
1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Hangzhou Wolei Intelligent Technology Co. Ltd, Hangzhou, Zhejiang 310018, China
Abstract:Aiming at the problem that the absolute positioning accuracy of current industrial robots is low and limited in industrial applications, based on standard ball distance constraint, a new method for industrial robot parameter calibration was proposed. Firstly, the MDH model was used to establish the robot kinematics model. Secondly, the contact probe was mounted on the end flange of the industrial robot, and a triangular calibration platform was built. The platform was rigidly connected with three standard balls with a diameter of 25.4mm. The theoretical center of the ball between each two balls was 300mm. The probe was used to separately detect the points on the three standard spheres, and record the values of the corresponding joint angles. Finally, the spherical center coordinates of the standard sphere were obtained by least squares fitting, and the distance was constrained from the actual spherical center distance measured by the coordinate measuring machine, and the kinematic parameter error was obtained by using the Levenberg_Marquardt algorithm. A total of 5 platform orientation experiments were performed and error compensation verification was performed using data from 5 other platform directions. The experimental results show that the average spherical center distance deviation decreases from 2.6812mm to 0.5694mm, and the standard deviation decreases from 0.6738mm to 0.1407mm.
[1]Judd R P, Knasinski A B. A technique to calibrate industrial robots with experimental verification[C]//IEEE Trans on Robotics &Automation, New York, US, 1991.
[2]李睿, 曲兴华. 工业机器人运动学参数标定误差不确定度研究[J]. 仪器仪表学报, 2014, 35(10): 2192-2199.
Li R, Qu X H. Study on calibration uncertainty of industrial robot kinematic parameters[J]. Chinese Journal of Scientific Instrument, 2014, 35(10): 2192-2199.
[3]任瑜, 张丰, 郭志敏, 等. 一种通用的工业机器人位姿检测方法[J]. 计量学报, 2018, 39(5): 615-621.
Ren Y, Zhang F, Guo Z M, et al. A general pose testing method of industrial robot[J]. Acta Metrologica Sinica, 2018, 39(5): 615-621.
[4]温秀兰, 崔俊宇, 芮平, 等. 轴线测量与迭代补偿的机器人几何参数标定[J]. 计量学报, 2018, 39(4): 449-454.
Wen X L, Cui J Y, Rui P, et al. Robot geometric parameters calibration based on axis measurement and iterative compensation[J]. Acta Metrologica Sinica, 2018, 39(4): 449-454.
[5]Santolaria J, Conte J, Ginés M. Laser tracker-based kinematic parameter calibration of industrial robots by improved CPA method and active retroreflector[J]. International Journal of Advanced Manufacturing Techno-logy, 2013, 66(9-12): 2087-2106.
[6]Alexandr K, Anatol P, Yier W, et al. Optimization of measurement configurations for geometrical calibration of industrial robot[J]. Springer-Verlag Berlin Heidelberg, 2012, 7506(3): 132-143.
[7]杨丽红, 秦绪祥, 蔡锦达, 等. 工业机器人定位精度标定技术的研究[J]. 控制工程, 2013, 20(4): 785-788.
Yang L H, Qin X X, Cai J D, et al. Research on industrial robot’s position accuracy calibration[J]. Control Engineering of China, 2013, 20(4): 785-788.
[8]车亚肖, 杨新刚, 高峰, 等. 基于球杆仪的三自由度串联机械臂运动学标定方法研究[J]. 机械强度, 2017, 39(6): 1315-1319.
Che Y X, Xin Y G, Gao F, et al. Research on kinematic calibration method of three degree of freedom series manipulator based on ballbar[J]. Journal of Mechanical Strength, 2017, 39(6): 1315-1319.
[9]王谦, 石朝耀, 李睿, 等. 基于空间距离模型评定工业机器人位置误差[J]. 工具技术, 2017, 51: 125-128.
Wang Q, Shi Z Y, Li R, et al. Evaluation position error of manipulator based in spatial distance model[J]. Tool Engineering, 2017, 51: 125-128.
[10]皇甫亚波, 杭鲁滨, 程武山, 等. 基于LM算法的机器人运动学标定[J]. 轻工机械, 2017, 35(4): 2-4.
Huang Fu Y B, Hang L B, Cheng W S, et al. Kinematic calibration for robot based on LM algorithm[J]. Light Industry Machinery, 2017, 35(4): 2-4.
[11]田少雄, 卢山, 刘宗明, 等. 基于LM算法的相对测量相机非线性标定技术[J]. 上海航天, 2015, 6(32): 30-33.
Tian S X, Lu S, Liu Z M, et al. Nonlinear optimization of camera calibration for relative measurement based on Levenberg-Marquardt algorithm[J]. Aerospace Shanghai, 2015, 6(32): 30-33.
[12]Richter L. Robust real-time robot/camera calibration[C]//Robotized Transcranial Magnetic Stimulation, Springer. New York, America, 2013
[13]夏天, 孙翰英, 范嘉桢, 等. 虚拟封闭运动链法提高机器人运动学标定精度[J]. 机械设计与研究, 2009, 25(2): 57-59.
Xia T, Sun H Y, Fan J Z, et al. Research of industrial robot calibration based on virtual closed kinematic chain[J]. Machine Design & Research, 2009, 25(2): 57-59.
[14]张馨龙, 田光宇, 黄勇. 三轴正交机器人运动误差的建模与分析[J]. 计量学报, 2017. 38(4): 118-122.
Zhang X L, Tian G Y, Huang Y. Modeling and Analysis of Movement Error of Three Axis Orthogonal Robots[J]. Acta Metrologica Sinica, 2017. 38(4): 118-122.
[15]陆艺, 于丽梅, 郭斌. 基于封闭尺寸链的工业机器人结构参数标定[J]. 仪器仪表学报, 2018. 39(2): 38-46.
Lu Y, Yu L M, Guo B. Calibration of industrial robot parameters based on standard ball distance constraints[J]. Chinese Journal of Scientific Instrument, 2018. 39(2): 38-46.
[16]Hayati S, Mirmirani M. Improving the absolute positioning accuracy of robot manipulators[J]. Journal of Robotic Systems, 1985, 2(4): 397-413.
[17]朱威, 李成刚, 徐兴明. 工业机器人误差补偿技术的理论与实验研究[J]. 机械与电子, 2011, (2): 77-80.
Zhu W, Li C G, Xu X M. Research on Theory and Experiment of the Industrial Robot Calibration[J]. Machinery & Electronics, 2011, (2): 77-80.
[18]Zeng Y, Tian W, Liao W. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42: 113-120.
[19]Barnfather J D, Goodfellow M J, Abram T. Development and Testing of an Error Compensation Algorithm for Photogrammetry Assisted Robotic Machining[J]. Measurement, 2016, 94: 561-577.