2025年04月06日 星期日 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2020, Vol. 41 Issue (9): 1138-1145    DOI: 10.3969/j.issn.1000-1158.2020.09.17
  电离辐射、标准物质与生物计量 本期目录 | 过刊浏览 | 高级检索 |
改进的快速跟踪回声状态网络及PM2.5预测
刘彬1,李德健1,赵志彪2,武尤2
1.燕山大学 电气工程学院,河北秦皇岛066004
2.燕山大学 信息科学与工程学院,河北秦皇岛066004
Improved Fast Tracking Echo State Network and PM2.5 Prediction
LIU Bin1,LI De-jian1,ZHAO Zhi-biao2,WU You2
1. Electrical Engineering College of Yanshan University, Qinghuangdao, Hebei 066004, China
2. Information Science and Engineering College of Yanshan University, Qinghuangdao, Hebei 066004, China
全文: PDF (1983 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对递归最小二乘回声状态网络在噪声环境中预测精度不高的问题,提出了一种改进的快速跟踪回声状态网络。首先在递归最小二乘回声状态网络结构的基础上,将自适应调节的可变遗忘因子加入其代价函数中,用改进的递归最小二乘法对网络输出权值进行训练,得到快速跟踪回声状态网络;然后利用经典Lorenz混沌系统验证快速跟踪回声状态网络的有效性;最后利用灰关联法分析各相关变量与PM2.5的关联度,建立PM2.5浓度值辅助变量集合,将辅助变量集合输入到快速跟踪回声状态网络进行PM2.5浓度值预测。实验表明,与传统回声状态网络、递归最小二乘回声状态网络预测效果相比,快速跟踪回声状态网络的预测方法精度佳,抗噪声能力强。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘彬
李德健
赵志彪
武尤
关键词 计量学PM2.5预测回声状态网络递归最小二乘法灰关联分析    
Abstract:Aiming at the problem that the recursive least squares echo state network has low prediction accuracy in noisy environments, an improved fast tracking echo state network was proposed. Firstly, the variable forgetting factor which can be adaptively adjusted was added into the cost function of network, and the output weights of the network were trained by the improved recursive least squares method to obtain a fast tracking echo state network. Then, the effectiveness of the proposed network was verified by classical Lorenz chaotic system. Finally, the grey correlation method was used to analyze the correlation between the relevant variables and PM2.5, and the auxiliary variable set of PM2.5 concentration value was established. The auxiliary variable set was input into the fast tracking echo state network to predict the PM2.5 concentration value. Experimental results show that compared with the traditional echo state network and the recursive least squares echo state network, the improved state echo network has better prediction accuracy and stronger anti-noise ability.
Key wordsmetrology    PM2.5 prediction    echo state network    recursive least square method    grey relational analysis
收稿日期: 2018-10-23      发布日期: 2020-08-28
PACS:  TB99  
基金资助:国家自然科学基金(51641609);河北省自然科学基金(E2018203398)
通讯作者: 李德健(1994-),男,黑龙江北安人,燕山大学电气工程学院硕士研究生,主要研究方向为回声状态网络预测控制。 Email: 501807366@qq.com     E-mail: liubin@ysu.edu.cn
作者简介: 刘彬(1953-),男,黑龙江哈尔滨人,燕山大学教授,主要从事信号估计与识别算法研究、智能传感与无线传感器网络关键技术研究。Email: liubin@ysu.edu.cn
引用本文:   
刘彬,李德健,赵志彪,武尤. 改进的快速跟踪回声状态网络及PM2.5预测[J]. 计量学报, 2020, 41(9): 1138-1145.
LIU Bin,LI De-jian,ZHAO Zhi-biao,WU You. Improved Fast Tracking Echo State Network and PM2.5 Prediction. Acta Metrologica Sinica, 2020, 41(9): 1138-1145.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2020.09.17     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I9/1138
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn