Abstract:The effect of acoustic characteristics of biological tissue on focal area of HIFU(high intensity focused ultrasound) was analyzed by finite element simulation, which provided theoretical basis for the safety and reliability of HIFU treatment. Ultrasonic propagation equation and frequency-domain finite element method (FEM) were applied to simulate the changes in focal area caused by the characteristics and thickness of tissues during HIFU treatment, and tissue mimicking phantoms were produced to verify the changes in focal area. The influences of characteristics and thickness of tissue on the focus area and location were analyzed and discussed. As a result, with the increase of acoustic velocity, the size of the focal region remained unchanged, and the focal region was closer to the side of the transducer. As the thickness increased, the size of the focal area basically remained unchanged. If acoustic velocity of the tissue was greater than that of the water, the focal area would be closer to the side of the transducer;if acoustic velocity of the tissue was less than that of the water, the focal area would move away from the transducer.
徐遨璇,王月兵,郑慧峰,曹永刚. 仿生物组织模型对高强度聚焦超声焦域影响的研究[J]. 计量学报, 2020, 41(8): 975-982.
XU Ao-xuan,WANG Yue-bing,ZHENG Hui-feng,CAO Yong-gang. Research on the Influence of Tissue Mimicking Phantomon Focal Area of HIFU. Acta Metrologica Sinica, 2020, 41(8): 975-982.
[1]Holland G A, Mironov O, Aubry J F, et al. High-intensity Focused Ultrasound[J]. Ultrasound Clinics, 2013, 8(2):213–226.
[2]熊六林. 高强度聚焦超声(HIFU)治疗肿瘤原理及临床应用现状[J]. 中国医疗器械信息, 2009, 15(3):17-21.
Xiong L L. Principle and clinical application of HIFU therapy for tumor [J]. Chinese medical instrument information, 2009, 15(3):17-21.
[3]Leslie T A, Kennedy J E. High-intensity Focused Ultrasound Principles, Current Uses, and Potential for the Future[J]. Ultrasound Quarterly, 2006, 22(4):263-272.
[4]Hwang J H, Crum L A. Current status of clinical high-intensity focused ultrasound[C]//IEEE Engineering in Medicine and Biology Society.Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009. 2009:130-133.
[5]王琨,冯玉岭,孟志强.肝脏肿瘤HIFU治疗现状及进展[J].肝癌电子杂志,2017,4(4):42-45.
Wang K, Feng Y L, Meng Z Q. Current situation and progress of HIFU treatment of liver cancer [J]. Journal of hepatoma electronics, 2017,4 (4):42-45.
[6]许利劼, 邹建中.高强度聚焦超声治疗“困难部位”肝癌的安全性及有效性[J].临床超声医学杂志,2014,16(3):182-184.
Xu L J, Zou J Z. Safety and efficacy of high-intensity focused ultrasound in the treatment of "difficult site" liver cancer [J]. Journal of clinical ultrasound medicine,2014,16(3):182-184.
[7]Narumi R, Matsuki K, Azuma T, et al. Numerical estimation of HIFU focal error for breast cancer treatment[C]// IEEE. 2013 IEEE International Ultrasonics Symposium (IUS).
[8]张晓静, 张平, 朱元光,等. 组织声学特性对高强度聚焦超声温度场的影响[J]. 国际生物医学工程杂志, 2010, 33(6):331-334.
Zhang X J, Zhang P, Zhu Y G, et al. Effect of tissue acoustic characteristics on high intensity focused ultrasound temperature field [J]. International journal of biomedical engineering, 2010, 33(6):331-334.
[9]胡爱明,钱盛友,杨林.HIFU治疗中媒质特性对声聚焦影响的研究[J].中国医学物理学杂志,2008,25(1):496-499,505.
Hu A M, Qian S Y, Yang L. A study on the influence of medium properties on acoustic focusing in HIFU therapy [J]. Chinese Journal of medical physics, 2008,25 (1):496-499,505.
[10]兰庆,王月兵,曹永刚,等. 超声造影剂衰减系数随时间变化特性研究[J]. 计量学报,2018,39(5): 702-707.
Lan Q, Wang Y B, Cao Y G, et al. Study on the Time-dependent Change of Attenuation Coefficient of Ultrasound Contrast Agent[J]. Acta Metrologica Sinica, 2018,39(5):702-707.
[11]姜凤荷. 声学透镜的声场仿真与设计方法研究[D]. 哈尔滨:哈尔滨工程大学,2019.
[12]陆宣明,应崇福.用超声鉴别生物组织的特性——(1)[J].应用声学,1987,6(4):1-6.
Lu X M, Ying C F. Identification of biological tissue by ultrasound (1) [J]. Applied acoustics, 1987,6(4):1-6.
[13]周玉禄. 层状生物媒质中的聚焦声场研究[D]. 武汉:中国科学院研究生院武汉物理与数学研究所, 2007.
[14]周浩, 郑音飞. 非均匀组织医学超声非线性传播仿真[J]. 浙江大学学报(工学版), 2016, 50(3):574-579.
Zhou H, Zheng Y F. Simulation of non-uniform tissue medical ultrasound nonlinear propagation [J]. Journal of zhejiang university (engineering engineering edition), 2016, 50(3):574-579.
[15]田耘博. 智能型超声体模的研究[D]. 重庆:重庆医科大学,2009.
[16]敬宗玉, 邹建中, 李发琪,等. 一种评价高强度聚焦超声聚焦性能的仿组织体模的建立[J]. 临床超声医学, 2006, 8(12):705-707.
Jing Z Y, Zou J Z, Li F Q, et al. Establishment of a tissue model to evaluate the focusing performance of high intensity focused ultrasound [J]. J ultrasound med, 2006, 8(12):705-707.
[17]Yoshimura K, Kato H, Kuroda M, et al. Development of a tissue-equivalent MRI phantom using carrageenan gel[J]. Magnetic Resonance in Medicine, 2003, 50(5):1011-1017.
[18]葛晶, 于帅. 生物基材料——卡拉胶的研究进展[J]. 河南建材,2018,1(6):117-118.
Ge J, Yu S. Research progress of carrageenan, a biomaterial [J]. Henan building materials, 2018,1(6):117-118.
[19]冯若, 陈兆华, 朱正亚,等. 猪的新鲜离体软组织的超声衰减和速度[J].声学学报,1985,10(5):285-292.
Feng R, Chen Z H, Zhu Z Y, et al. Ultrasonic attenuation and velocity of fresh pig soft tissue in vitro [J]. Journal of acoustics, 1985,10(5):285-292.
[20]吕海涛. 生物多层组织的声传输特性研究[D]. 西安:陕西师范大学, 2006.
[21]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2012.