1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
Abstract:The accurate determination of the central axis of the thread is one of the important factors that determine whether the three-dimensional measurement result of the thread is accurate. The inclination and offset of the central axis will introduce errors in the measurement operations, such as setting up the workpiece coordinate system, reconstructing the three-dimensional thread, and inspecting the parameters.Based on three-dimensional point cloud, the least squares fitting algorithm is proposed to develop the fitting method of the central axis of the thread. According to the point cloud data of the thread surface, the least square mathematical model is established by using the characteristic relationship between the thread surface and the central axis, and the three-dimensional convex hull of the point cloud data is calculated to filter out the fitting error brought by the three-dimensional structure of the thread itself, so the measurement is more accurate. Through simulation experiments, the distance between the straight line fitted by the least square fitting algorithm based on the three-dimensional point cloud and the three-dimensional point cloud has a variance of 0.34, the maximum distance between the two ends of the straight line determined by the projection method within the twist length is 0.15μm, which meets the high-precision standard for three-dimensional measurement. It shows that the least squares fitting algorithm based on the three-dimensional point cloud is a fast and accurate fitting method of the thread central axis.
[1]李晓滨. 2018年全国螺纹标准化工作综述 [J]. 机械工业标准化与质量, 2019,(5): 20-22.
[2]Huh J, Hyun J H, Park H G, et al. Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion [J]. Journal of Korean Neurosurgical Society, 2019, 62 (4): 376-381.
[3]郭崇颖, 刘检华, 唐承统, 等. 基于三维凸包的公差基准轴线拟合 [J]. 光学精密工程, 2014, 22 (12): 3247-3257.
Guo C Y, Liu J H, Tang C T, et al. Tolerance datum axis fitting based on three-dimensional convex hull [J]. Optics and Precision Engineering, 2014, 22 (12): 3247-3257.
[4]庄正杰, 王立光, 龚应忠,等. 基于三维激光扫描及凸包算法的油罐底部排量快速测量 [J]. 计量学报, 2018, 39 (6): 102-106.
Zhuang Z J, Wang L G, Gong Y Z, et al. Rapid measurement of oil tank bottom displacement based on 3D laser scanning and convex hull algorithm [J]. Acta Metrologica Sinica, 2018, 39 (6): 102-106.
[5]Petitjean M. About the algebraic solutions of smallest enclosing cylinders problems [J]. Applicable Algebra in Engineering,Communication and Computing , 2012, 23 (3-4): 151-164.
[6]沈焱萍, 郑康锋, 伍淳华, 等. 智能启发算法在机器学习中的应用研究综述[J]. 通信学报, 2019, 40 (12): 124-137.
Shen Y P, Zheng K F, Wu C H, et al. A review of the application of intelligent heuristic algorithms in machine learning [J]. Journal of Communications, 2019, 40 (12): 124-137.
[7]贾桐. 深度学习常用优化算法研究 [J]. 信息技术与网络安全, 2019, 38 (7): 42-46.
Jia T. Research on commonly used optimization alg-orithms for deep learning [J]. Information Technology and Network Security, 2019, 38 (7): 42-46.
[8]李占光. 智能计算在数学建模中的价值分析[J]. 电气传动, 2020, 50 (2): 134.
Li Z G. The value analysis of intelligent computing in mathematical modeling [J]. Electric Drive, 2020,50 (2): 134.
[9]鲁敏, 胡红波. 基于正弦激励的压电加速度计模型参数辨识 [J]. 计量学报, 2020, 41 (1): 55-59.
Lu M, Hu H B. Parameter identification of piezoelectric accelerometer model based on sinusoidal excitation [J]. Acta Metrologica Sinica, 2020, 41 (1): 55-59.
[10]杨红, 陈豫眉. 基于随机Kaczmarz算法的最小二乘拟合 [J]. 洛阳师范学院学报, 2020,39 (2):1-4.
Yang H, Chen Y M. Least squares fitting based on stochastic Kaczmarz algorithm [J]. Journal of Luoyang Teachers College, 2020,39 (2): 1-4.
[11]高俊鹏, 姜涛, 张桂林. 一种ABS齿圈参数检测系统误差校正方法研究 [J]. 计量学报, 2019, 40 (2): 27-33.
Gao J P, Jiang T, Zhang G L. Research on an error correction method of ABS ring gear parameter detection system [J]. Acta Metrologica Sinica, 2019, 40 (2): 27-33.
[12]许金鑫 由强. 任意阶次多项式最小二乘拟合不确定度计算方法与最佳拟合阶次分析 [J]. 计量学报, 2020,41 (3): 388-392.
Xu J X, You Q. Least squares fitting uncertainty calculation method and best-fit order analysis for polynomials of any order [J]. Acta Metrologica Sinica, 2020,41 (3): 388-392.
[13]同济大学数学系. 高等数学 [M]. 6版. 北京:高等教育出版社, 2007.
[14]王炳杰, 赵军鹏, 王春洁. 基于三维最小二乘方法的空间直线度误差评定 [J]. 北京航空航天大学学报, 2014, 40 (10): 1477-1480.
Wang B J, Zhao J P, Wang C J. Spatial straightness error evaluation based on three-dimensional least squares method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (10): 1477-1480.
[15]毛鹏. 快速凸包计算实现及其应用 [D]. 西安:西安电子科技大学, 2013.
[16]杨明, 刘先忠. 矩阵论 [M]. 2版. 武汉:华中科技大学出版社, 2003.
[17]杜福洲, 王小强, 段桂江. 基于最小二乘法的几何元素拟合算法研究 [J]. 航空制造技术, 2011,(21): 57-60.
Du F Z, Wang X Q, Duan G J. Research on geometric element fitting algorithm based on least square method [J]. Aviation Manufacturing Technology, 2011, (21): 57-60.
[18]李航. 坐标测量机软件系统开发及几何量评定技术研究 [D]. 合肥:合肥工业大学, 2010.
[19]GB/T 196—2003普通螺纹基本尺寸 [S].
[20]王印, 罗善明, 温泉, 等. 基于二次投影法的偏心轴检测与分析 [J]. 机械传动, 2017, 41 (7): 116-118.
Wang Y, Luo S M, Wen Q, et al. Detection and analysis of eccentric shaft based on quadratic projection method [J]. Mechanical Transmission, 2017, 41 (7): 116-118.
[21]赵军, 陆首创, 郭天太, 等. 基于坐标法的特大齿轮螺旋线偏差计算方法研究 [J]. 中国计量大学学报, 2017, 28 (1): 23-28.
Zhao J, Lu S C, Guo T T, et al. Research on the calculation method of the helical deviation of extra-large gears based on the coordinate method [J]. Journal of China Jiliang University, 2017, 28 (1): 23-28.