Vertex Radius of Curvature Fabrication Error Measurement of Aspheric Surface in Partial Compensation Interferometry
HU Yao1,LI Teng-fei2,HAO Qun1,CHANG Xu1
1. Beijing Key Lab for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
2. China North Vehicle Research Institute, Beijing 100072, China
Abstract:Precisely measuring the vertex radius of curvature (VROC) fabrication error is critical for the manufacture and alignment of optical aspheric surfaces. Conventional partial compensation interferometry (PCI) can only test the aspherical surface figure error which is defined as the irregular difference between the measured and nominal surface. A VROC fabrication error measurement method of aspheric surface in PCI is proposed. Based on specific aberration analysis of the residual wavefront changing with the position of the measured aspheric surface, VROC fabrication error can be obtained. The simulation experiments are done to verify the method, and the results show that the theoretical relative measuring accuracy is no less than 0.003%.
[1]Fang F Z, Zhang X D, Weckenmann A, et al. Manufacturing and measurement of freeform optics[J]. CIRP Annals-Manufacturing Technology, 2013, 62(2): 823-846.
[2]Hao Q, Zhu Q D. Aspheric Surface Testing Using a Partial Compensation Lens[J]. Key Engineering Materials, 2008, 381-382: 263-266.
[1]Born M, Wolf E. Principles of Optics Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. Cambridge: Cambridge University Press, 1999.
[2]Wang H, Li Y, Zeng L, et al. A simple ray tracing method for measuring the vertex radius of curvature of an aspheric mirror[J]. Optics Communications, 2004, 232(1-6): 61-68.
[3]Liu H, Zhu Q, Hao Q. Design of novel part-compensating lens used in aspheric testing[C]//Fifth International Symposium on Instrumentation and Control Technology. Beijing, 2003:480-484.
[6]Mishra K, Mugele F. Numerical analysis of electrically tunable aspherical optofluidic lenses[J]. Optics Express, 2016, 24(13): 14672.
[4]Saif B, Chaney D, Smith W S, et al. Nanometer level characterization of the James Webb Space Telescope optomechanical systems using high-speed interferometry [J]. Applied Optics, 2015, 54(13): 4285-4298.
[5]Tsutsumi H, Yoshizumi K, Takeuchi H. Ultrahighly accurate 3D profilometer[C]//Proceedings of SPIE-The International Society for Optical Engineering. Beijing, China,2005:387-394.
[6]Li Z, Qiu L, Zhao W, et al. Laser differential confocal ultra-large radius measurement for convex spherical surface[J]. Optics Express, 2016, 24(17): 19746-19759.
[7]Schwider J, Zhou L. Dispersive interferometric profilometer[J]. Optics Letters, 1994, 19(13): 995-997.
[8]汪洁, 谢铁邦. 接触与非接触两用表面轮廓综合测量仪[J]. 湖北工业大学学报, 2005, 20(5): 43-45.
Wang J, Xie T B. A Contact and Non-contact Synthesis Measuring Profilometer[J]. Journal of Hubei University of Technology, 2005, 20(5): 43-45.
[9]Wang Y, Su P, Parks R E, et al. Swing arm optical coordinate-measuring machine: high precision measuring ground aspheric surfaces using a laser triangulation probe[J]. Optical Engineering, 2015, 51(7): 3603.
[10]邵伟,彭鹏,周阿维,等. 有效消除多视拼接累计误差的大曲面测量方法[J]. 计量学报, 2018, 39(6): 777-782.
Shao W, Peng P, Zhou A W, et al. Large Surface Measurement Method of Effectively Eliminating Multi-view Stitching Accumulative Error[J]. Acta Metrologica Sinica, 2018, 39(6): 777-782.
[11]王建明, 郭培基, 仇谷烽. 三坐标轮廓测量仪测量离轴非球面的数据处理[J]. 光学技术, 2013, 39(4): 291-296.
Wang J M, Guo P J, Qiu G F. Data processing of offaxis aspheric surface measurement by coordinate contour measuring machine[J]. Optical Technique, 2013, 39(4): 291-296.
[12]陈曦, 郭培基, 王建明, 等. 离轴非球面三坐标检测技术[J]. 光学技术, 2014, 40(4): 339-344.
Chen X, Guo P J, Wang J M, et al. Off-axis aspheric surface measurement by coordinate contour measuring machine[J]. Optical Technique, 2014, 40(4): 339-344.
[13]Qiu L R, Jia L I, Zhao W Q, et al. Laser confocal measurement system for curvature radii of lenses[J]. Optics & Precision Engineering, 2013, 21(2): 246-252.
[14]Huang C, Fan B, Liu F, et al. A new method on measuring radius of curvature of a conic aspherical mirror[C]//International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes. Harbin, China, 2014: 928017.
[15]谢枫. 部分补偿非球面检测法的关键问题研究[D]. 北京: 北京理工大学, 2010.
[16]Malacara D. Optical Shop Testing[M]. New York: Wiley-Interscience, 2006.
[17]Mejía Y, Díaz-Uribe R, Pacheco A L, et al. Measuring conic constant and vertex radius of fast convex conic surfaces from a set of Hartmann patterns[J]. Optics Communications, 2016, 363: 166-175.
[18]Díaz-Uribe R, Camposgarcía M. Null-screen testing of fast convex aspheric surfaces[J]. Applied Optics, 2000, 39(16): 2670.
[19]Díaz-Uribe J R, Cornejo-Rodriguez A. Conic constant and paraxial radius of curvature measurements for conic surfaces[J]. Applied Optics, 1986, 25(20): 3731.
[20]Huang C, Wu Y, Fan B, et al. Solving surface parameters of conic asphere mirror based on computer simulation[C]//Eighth International Symposium on Advanced Optical Manufacturing and Testing Technology.Suzhou, China, 2016.
[21]Stahl H P. Aspheric surface testing techniques[C]//Proceedings of SPIE-The International Society for Optical Engineering. San Diego, CA,USA,1991:71.
[22]Kim T, Burge J H, Lee Y, et al. Null test for a highly paraboloidal mirror[J]. Applied Optics, 2004, 43(18): 3614-8.
[23]Robinson B M, Reardon P J, Geary J M. Mirror Prescription Regression: A Differential Interferometric Technique[J]. International Journal of Optics, 2010(3): 1-10.
[24]Yang Y, Zhang L, Shi T, et al. Determination of aspheric vertex radius of curvature in non-null interferometry[J]. Applied Optics, 2015, 54(10): 2838-44.
[25]孟晓辰. 干涉检测的波前频谱特性研究[D]. 北京: 北京理工大学, 2011.
[26]Hao Q, Wang S, Hu Y, et al. Virtual interferometer calibration method of a non-null interferometer for freeform surface measurements[J]. Applied Optics, 2016, 55(35): 9992.
[27]李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 杭州: 浙江大学出版社, 2014.