Two-phase Flow Pattern Recognition Based on Electrical Capacitance Tomography Reconstructed Images
WANG Xiao-xin1,WANG Bo2,CHEN Yang-zheng1,HU Hong-li3
1. Shaanxi Key Laboratory of Photoelectric Sensing Logging,Xi’an Shiyou University, Xi’an, Shaanxi 710065, China
2. Geophysical Exploration Technology and Equipment R&D Center, Xi’an Research Institute of China Coal Technology & Engineering Group Corp, Xi’an, Shaanxi 710077, China
3. State Key Laboratory of Electrical Insulation & Power Equipment, Xi’an Jiaotong University, Xian, Shaanxi 710049, China
Abstract:To realize the industrial multiphase flow pattern recognition, based on the research of process tomography, the reconstructed image information is analyzed and processed simply and efficiently, the two-dimensional maximum entropy threshold segmentation technique and the genetic algorithm optimized neural network classifier are used to realize the flow pattern identification.Three typical gas-solid flow patterns were verified on the two-phase flow pneumatic transport platform by the mentioned method.The experimental results showed that the recognition accuracy is 94.7%.
[1]周云龙, 孙斌, 李洪伟. 多相流参数检测理论及其应用[M].北京:科学出版社, 2010: 1-12.
[2]Xing L, Yeung H, Shen J, et al.A new flow conditioner for mitigating severe slugging in pipeline/riser system[J].International Journal of Multiphase Flow, 2013, 51 (51): 65-72.
[3]谭超,董峰.多相流过程参数检测技术综述[J].自动化学报, 2013,39 (11):1923-1932.
Tan C, Dong F. Parameters Measurement for Multiphase Flow Process[J].Acta automatica sinica, 2013, 39 (11):1923-1932.
[4]张立峰,蒋玉虎. 电容层析成像三维图像重建研究[J].计量学报, 2019, 40(3): 462-465.
Zhang L F, Jiang Y H. Study of Three-dimensional Image Reconstruction for Electrical Capacitance Tomography[J].Acta Metrologica Sinica, 2019, 40(3): 462-465.
[5]Yang D Y, Shi Y, Xu X F. Parameter measurement system for gas /solid two phase flow based on twin-plane electrical capacitance tomography[J].Chinese Journal of Scientific Instrument, 2013, 34 (9):1968-1974.
[6]张立峰, 朱枫. 电容层析成像混联归一化模型研究[J].计量学报, 2018, 39(5): 675-678.
Zhang L F, Zhu F. Research on Hybrid Normalization Model of Electrical Capacitance Tomography [J].Acta Metrologica Sinica, 2018, 39(5): 675-678.
[7]Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J].Computer Vision Graphics & Image Processing, 1980, 29 (3): 273-285.
[8]Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J].Computer Vision Graphics & Image Processing, 1989, 47 (1): 22-32.
[9]Wang X X, Hu H L, Liu X. Concentration Measurement of Dilute Pulverized Fuel Flow by Electrical Capacitance Tomography[J].Instrumentation Science & Technology,2015, 43(1): 89-106.
[10]周云龙, 李洪伟, 孙斌. 基于数字图像处理技术的多相流参数检测技术[M].北京:科学出版社, 2012.
[11]Rumelhart D, Mcclelland J. Learning Internal Representations by Error Propagation[M].Cambridge, Massachusetts: MIT Press, 1988: 399- 421.
[12]马玉良, 马云鹏, 张启忠, 等. GA-BP神经网络在下肢运动步态识别中的应用研究[J].传感技术学报,2013, 26 (9):1183-1187.
Ma Y L, Ma Y P, Zhang Q Z, et al. Gait Phase Recognition of lower limb based on GA optimized BP neural network[J].Chinese journal of sensors and actuators, 2013, 26 (9):1183-1187.
[13]Wang X, Hu H, Liu X. Multisensor data fusion techniques with ELM for pulverized-fuel flow concentration measurement in cofired power plant[J].IEEE Transactions on Instrumentation & Measurement, 2015, 64 (10): 2769-2780.
[14]刘骁, 王小鑫, 胡红利. 改进型离线迭代在线重构算法的ECT成像技术研究[J].西安交通大学学报, 2014, 48(4):35-40.
Liu X, Wang X X, Hu H L. Improved offline iteration and online reconstruction algorithm in electrical capacitance tomography imaging technology[J].Journal of Xian Jiaotong University, 2014, 48(4):35-40.
[15]Hu H L, Xu T M, Hui S E. A high-accuracy, high-speed interface circuit for differential-capacitance transducer[J].Sensors and Actuators: A Physical, 2006,125(2): 329-334.
[16]Yan J B, Wang X X, Hu H L, et al. Multi-sensor information processing and fusion platform: ICST2013[C]// Proceedings of Int Conf Sens Technol, Wellington, New Zealand, 2013: 495-500.