Research on Design and Performance Analysis by Using Electromagnetic Assisted Piezoelectric Actuator
WEI Xiao-hua,ZHENG Ling-chen
1. School of Mechanical and Electrical Engineering, Quzhou College of Technology, Quzhou, Zhejiang 324000, China
2. School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
Abstract:Conventional piezoelectric actuator suffers from the limitation of small controling scale, due to the short travelling range of piezoelectric actuation.An electromagnetic assisted piezoelectric actuator was developed, which has the advantages with both long traveling range in electromagnetic actuator and high-resolution in piezoelectric actuator.The actuator consists of movable part, guide groove, flexible member, electromagnet, piezoelectric element, and control circuits.First of all, adjusting the electromagnetic force between the maximum static friction force and kinetic friction force by setting the pre-load structure and the coil current.Then, the micro-vibration was generated by piezoelectric components to control transition between static friction and kinetic friction using contact situation of the movable part and the guide groove.Therefore, the actuator can perform reciprocating motion with long traveling range(10mm) and high resolution(1.5μm). The experiment results showed that the proposed actuator has excellent positioning ability.
[1]周哲, 王登攀, 张祖伟, 等. 应用于智能机翼的压电致动器技术研究[J]. 压电与声光, 2016, 38(3): 420-422.
Zhou Z, Wang D P, Zhang Z W, et al. Research on Piezoelectric Actuator Applied to the Smart Wing[J]. Piezoelectrics and Acoustooptics, 2016, 38(3): 420-422.
[2]Bonard J M, Dean K A, Coll B F, et al. Field emission of individual carbon nanotubes in the scanning electron microscope[J]. Physical Review Letters, 2002, 89(19): 7602-7605.
[3]Wu Y, Zhou Z. An XYθ, mechanism actuated by one actuator[J]. Mechanism & Machine Theory, 2004, 39(10): 1101-1110.
[4]Nakajima M, Arai F, Fukuda T. In situ measurement of Youngs modulus of carbon nanotubes inside a TEM through a hybrid nanorobotic manipulation system[J]. IEEE Transactions on Nanotechnology, 2006, 5(3): 243-248.
[5]Chen C, Gayral T, Caro S, et al. A Six-Dof Epicyclic-Parallel Manipulator[J]. Asme Journal of Mechanisms & Robotics, 2012, 4(4): 264-268.
[6]黄然. 非线性预加载压电悬臂梁致动器的设计与试验研究[D]. 长春:吉林大学, 2016.
[7]焦振瑞. 六自由度压电微动平台测量系统开发[J]. 工具技术, 2017, 51(2): 102-106.
Jiao Z R. Development of Measurement System Based on 6-DOF Piezoelectric Micromotion Platform[J]. Tool Engineering, 2017, 51(2): 102-106.
[8]时培明, 孙鹏, 袁丹真. 基于非线性耦合双稳态随机共振的轴承微弱故障信号增强检测方法研究[J]. 计量学报, 2018, 39(3): 373-376.
Shi P M, Sun P, Yuan D Z. Research on the Enhanced Detection Method of Bearing Fault Weak Fault Signal Based on Nonlinear Coupled Bistable Stochastic Reson-ance[J]. Acta Metrologica Sinica, 2018, 39(3): 373-376.
[9]吴爱华, 刘晨, 王一帮, 等. 无源器件噪声标准值计算方法的研究[J]. 计量学报, 2018, 39(1): 99-103.
Wu A H, Liu C, Wang Y B, et al. Research on Calculating Method about the Standard Value of Noise for Passive Device[J]. Acta Metrologica Sinica, 2018, 39(1): 99-103.
[10]时培明, 苏晓, 袁丹真, 等. 基于VMD和变尺度多稳随机共振的微弱故障信号特征提取方法[J]. 计量学报, 2018, 39(4): 515-520.
Shi P M, Su X, Yuan D Z, et al. A New Feature Extraction Method of Weak Fault Signal Based on VMD and Re-scaling Multi-stable Stochastic Resonance[J]. Acta Metrologica Sinica, 2018, 39(4): 515-520.
[11]郑永军, 祝增献, 朱善安. 非线性分数阶双稳系统逻辑随机共振的研究[J]. 计量学报, 2017, 38(5): 637-640.
Zheng Y J, Zhu Z X, Zhu S A. Logic Stochastic Resonance Induced by a Nonlinear Fractional Bistable System[J]. Acta Metrologica Sinica, 2017, 38(5): 637-640.
[12]肖峻, 杜兆勇, 杨铮, 等. 机车轮对压装力准确性影响因素的研究[J]. 计量学报, 2017, 38(4): 464-468.
Xiao J, Du Z Y, Yang Z, et al. Study on the Influence Factors on Pressure Accuracy of Locomotive Wheel-set Press-fit[J]. Acta Metrologica Sinica, 2017, 38(4): 464-468.