Abstract:Aiming at the problem that it is difficult to directly measure the capacity of the lithium-ion battery when the remaining useful life(RUL)of the battery is predicted and the prediction result is inaccurate, an indirect prediction method was proposed. First, after fully analyzing the parameters of battery life sates, the equivalent voltage drop discharge time was chosen as the indirect health index of the battery. Secondly, genetic algorithm was introduced to optimize the extreme learning machine parameters to establish an indirect RUL prediction model for lithium-ion battery. Finally, the correctness of the GA-ELM method was verified based on NASA data and independent experimental data. The results showed, compared with the ELM method and Gaussian process regression method, this new method is accurate and effective, with high predicting speed, and its output is stable.
[1]Liao L, Kttig F. A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction[J]. Applied Soft Computing, 2016, 44(C): 191-199.
[2]陈则王,杨丽文,赵晓兵, 等. 基于改进无迹卡尔曼滤波的锂电池SOC在线估计[J]. 计量学报, 2019, 40(1): 40-48.
Chen Z W,Yang L W,Zhao X B, et al. Online Estimation of SOC for Li-ion Battery Based on An Improved Unscented Kalman Filters Approach[J]. Acta Metrologica Sinica, 2019, 40(1): 40-48.
[3]刘大同, 周建宝, 郭力萌, 等. 锂离子电池健康评估和寿命预测综述[J]. 仪器仪表学报, 2015, 36(1): 1-16.
Liu D T, Zhou J B, Guo L M, et al. Survey on lithium-ion battery health assessment and cycle life estimation[J]. Chinese Journal of Scientific Instrument, 2015, 36(1): 1-16.
[4]王凤国, 张忠相, 欧阳松, 等. 基于Kalman算法的软测量技术在电池容量检测中的应用[J]. 计量学报, 2014, 35(2): 165-168.
Wang F G, Zhang Z X, OuYang S, et al. Application Soft-sensing Technique Based on Kalman Algorithm for Battery Capacity Detection[J]. Acta Metrologica Sinica, 2014, 35(2): 165-168.
[5]陶耀东, 李宁. 基于ARIMA模型的工业锂电池剩余使用寿命预测[J]. 计算机系统应用, 2017, 26(11): 282-287.
Tao Y D, Li N. Industrial Lithium Battery Remaining Useful Life Prediction Based on the ARIMA Model[J]. Computer Systems & Applications, 2017, 26(11): 282-287.
[6]张淑清, 任爽, 陈荣飞, 等. 基于大数据简约及PCA改进RBF网络的短期电力负荷预测[J]. 计量学报, 2018, 39(3): 392-396.
Zhang S Q, Ren S, Chen R F, et al. Short-term Power Load Forecast Based on Big Data Reduction and PCA-improved RBF Network[J]. Acta Metrologica Sinica, 2018, 39(3): 392-396.
[7]Andre D, Appel C, Soczka-Guth T, et al. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources, 2013, 224(5): 20-27.
[8]刘月峰, 赵光权, 彭喜元. 锂离子电池循环寿命的融合预测方法[J]. 仪器仪表学报, 2015, 36(7): 1462-1469.
Liu Y F, Zhao G Q, Peng X Y, et al. A fusion prediction method of lithium-ion battery cycle-life. Chinese Journal of Scientific Instrument[J]. Chinese Journal of Scientific Instrument, 2015, 36(7): 1462-1469.
[9]彭虹桥, 顾洁, 胡玉, 等. 基于混沌粒子群—高斯过程回归的饱和负荷概率预测模型[J]. 电力系统自动化, 2017, 41(21): 25-32.
Peng H Q, Gu J, Hu Y, et al. Forecasting Model of Saturated Load Based on Chaotic Particle Swarm and Optimization-Gaussian Process Regression[J]. Automation of Electric Power Systems,2017, 41(21): 25-32.
[10]冯楠, 王振臣, 胖莹. 基于自适应遗传算法和BP神经网络的电池容量预测[J]. 计量学报, 2012, 33(6): 1586-1588.
Feng N, Wang Z C, Pang Y, et al. BP Neural Networks Based on Adaptive Genetic Algorithms and Its Application to Prediction of Battery Capacity[J]. Acta Metrologica Sinica, 2012, 33(6): 1586-1588.
[11]庞景月, 马云彤, 刘大同, 等. 锂离子电池剩余寿命间接预测方法[J]. 中国科技论文, 2014,9(1): 28-36.
Pang J Y, Ma Y T, Liu D T, et al. Indirect prediction method for remaining life of lithium ion battery[J]. Sciencepaper Online, 2014,9(1): 28-36.
[12]姜媛媛, 刘柱, 罗慧, 等. 锂电池剩余寿命的ELM间接预测方法[J]. 电子测量与仪器学报, 2016, 30(2): 179-185.
Jiang Y Y, Liu Z, Luo H, et al. ELM indirect prediction method for the remaining life of lithium-ion battery[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(2): 179-185.
[13]吴婧睿. 基于GSO-ELM的锂离子电池剩余寿命间接预测方法研究[D]. 大连: 大连海事大学, 2017.
[14]Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//IEEE.2004 IEEE International Joint Conference on Neural Networks. Budapest, Hungary, 2004: 985-990.
[15]张松林, 李雪. 灵敏度正则化极限学习机及其在数字识别中的应用[J]. 计算机系统应用, 2017, 26(6): 143-147.
Zhang S L, Li X. Sensitivity Regularized Extreme Learning Machine and Its Application in Digit Recognition[J]. Computer Systems & Applications, 2017, 26(6): 143-147.
[16]彭显刚, 郑伟钦, 林利祥, 等. 考虑负荷自适应检测和修复的鲁棒极限学习机短期负荷预测方法[J]. 中国电机工程学报, 2016, 36(23): 6409-6417.
Peng X G, Zheng W Q, Lin L X, et al. Short-term Load Forecasting Method Based on Outlier Robust Extreme Learning Machine Considering Adaptive Load Detection and Repair[J]. Proceedings of the CSEE, 2016, 36(23): 6409-6417.
[17]Lin L, Wang F, Xie X. Random forests-based extreme learning machine ensemble for multi-regime time series prediction[J]. Expert Systems with Applications, 2017, 83(C): 164-176.