2025年04月03日 星期四 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2020, Vol. 41 Issue (6): 717-723    DOI: 10.3969/j.issn.1000-1158.2020.06.14
  力学计量 本期目录 | 过刊浏览 | 高级检索 |
基于改进变分模态分解的滚动轴承故障诊断方法
孟宗,吕蒙,殷娜,李晶
燕山大学 河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
Fault Diagnosis Method of Rolling Bearing Based on Improved Variational Mode Decomposition
MENG Zong,Lü Meng,YIN Na,LI Jing
Key Laboratory of Measurement Technology and Instrumentation of Hebei Province,Yanshan University, Qinhuangdao, Hebei 066004, China
全文: PDF (637 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 提出一种改进变分模态分解的轴承故障信号诊断方法。使用改进的奇异值分解降噪方法对信号进行降噪,然后对信号进行变分模态分解;利用分量信号的能量之和占原信号能量的比值,判断变分模态分解的分解效果,从而找出最佳分解层数;根据分量信号间的相关系数,判断中心频率相邻的分量信号是否来自信号中的同一调制部分;最后通过主要分量的包络谱找出故障特征频率,判断故障类型。通过对仿真信号和实际轴承故障信号进行处理,成功提取微弱频率特征信息,验证了该方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟宗
吕蒙
殷娜
李晶
关键词 计量学滚动轴承故障诊断变分模态分解奇异值分解    
Abstract:A fault diagnosis method for bearing fault signal with improved variational mode decomposition was proposed. Firstly, the improved singular value decomposition denoising method was used to denoise the signal, and then the signal was subjected to variational mode decomposition.By using the ratio of the sum of the energy of the component signal to the original signal energy, the decomposition effect of the variational mode decomposition was judged to find the optimal decomposition layer. And based on the correlation coefficient between the component signals, it was judged whether the component signal adjacent to the center frequency was from the same modulation portion in the signal. Finally, the fault characteristic frequency was found by the envelope spectrum of the main component, and the fault type was judged.The weak frequency characteristic information was successfully extracted by processing the simulated signal and the actual bearing fault signal, and the effectiveness of the method was verified.
Key wordsmetrology    rolling bearing    fault diagnosis    variational mode decomposition    singular value decomposition
收稿日期: 2018-09-11      发布日期: 2020-06-08
PACS:  TB936  
  TB973  
基金资助:国家自然科学基金(51575472, 61873226); 河北省自然科学基金(E2019203448)
通讯作者: 孟宗     E-mail: mzysu@ysu.edu.cn
作者简介: 孟宗(1977-), 男,河北保定人, 燕山大学教授, 博士, 主要研究方向为信号分析与处理, 旋转机械故障诊断。Email:mzysu@ysu.edu.cn
引用本文:   
孟宗,吕蒙,殷娜,李晶. 基于改进变分模态分解的滚动轴承故障诊断方法[J]. 计量学报, 2020, 41(6): 717-723.
MENG Zong,Lü Meng,YIN Na,LI Jing. Fault Diagnosis Method of Rolling Bearing Based on Improved Variational Mode Decomposition. Acta Metrologica Sinica, 2020, 41(6): 717-723.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2020.06.14     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I6/717
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn