Abstract:The main features of the plastic scintillator-type car-borne radioactive detection system was introduced. Through the combination of theoretical model and experiment, the measurement feasibility and estimation measurement method of the minimum detectable activity (MDA) were studied. The results showed that: (1) when estimating the MDA of the plastic scintillator-type car-borne radioactive detection system, the activity response should be measured within 20m from the car body; (2) The relationship between the reference activity response and the distance x is a two-element addition model, from which the minimum detectable activity at a specific location can be estimated or minimum detectable distance of the Car-borne radioactivity detection system can be estimated if the reference source activity is known. The MDA estimation method established by the research can provide reference for the technical performance evaluation and application of the plastic scintillator-type car-borne radioactive detection system.
[1]陆小军, 忻智炜, 宋家斑, 等. 车载式放射性探测系统的性能与检测方法[J]. 上海计量测试, 2019, 46(1): 35-37.
Lu X J, Xin Z W, Song J B, et al. Measurement Status and Suggestions of Car-borne Radioactive Detection System[J]. Shanghai Measurement and Testing, 2019, 46(1): 35-37.
[2]International Atomic Energy Agency. Guidelines for radioelement mapping using gamma ray spectrometry data [R]. 2003.
[3]赵顺平. 车载大体积NaI γ谱仪在环境监测中的应用研究[C]//中国核学会. 中国核学会辐射防护分会2012年学术年会. 2012: 9.
[4]何林锋, 唐方东, 赵超. 环境γ谱仪对大气中放射性核素活度浓度响应系数测量方法[J]. 核技术, 2018, 41(8): 080401.
He L F, Tang F D, Zhao C. A method to determine the response coefficient of environmental gamma spectrometer to airborne radionuclide concentration [J]. Nuclear Technology, 2018, 41(8): 080401.
[5]赵超, 杨振, 唐方东,等. 环境γ辐射剂量率仪现场校准用辐照装置的研制[J]. 核技术, 2016, 39(9): 090201.
Zhao C, Yang Z, Tang F D, et al. Development of an irradiation device for on-site calibration of environmental gamma radiation dose rate meter[J]. Nuclear Technology, 2016, 39(9): 090201.
[6]何林锋, 赵超, 陆小军,等. 固定式环境γ辐射监测及其量值溯源[J].上海计量测试, 2016, 43(3): 9-11.
He L F, Zhao C, Lu X J, et al. Fixed environmental gamma radiation monitoring and its traceability[J]. Shanghai Measurement and Testing, 2016, 43(3): 9-11.
[7]赵超, 宋家斑, 张瑜,等. 固定式环境γ谱仪量值溯源方法[J]. 上海计量测试, 2017, 44(3): 9-12.
Zhao C, Song J B, Zhang Y, et al. Discussion on traceability method for fixed environmentalγ spectrometer[J]. Shanghai Measurement and Testing, 2017, 44(3): 9-12.
[8]袁之伦, 李宏宇, 唐丽丽, 等. 车载辐射环境巡测技术应用的探讨[J]. 环境监测管理与技术, 2013, 25(6): 52-55.
Yuan Z L, Li H Y, Tang L L, et al. Discussion on the Application of Vehicle Radiation Monitoring Technology[J]. The Administration and Technique of Environmental Monitoring, 2013,25(6): 52-55.
[9]中华人民共和国卫生部. GBZ 125-2009 含密封源仪表的放射卫生防护要求[S]. 2009.
[10]吴学超, 冯正永. 核物理实验数据处理[M]. 北京: 原子能出版社, 1988.
[11]杨志杰, 刘皓然, 梁珺成, 等. 水中多γ放射性核素活度测量比对[J]. 计量学报, 2019, 40(5): 914-919.
Yang Z J, Liu H R, Liang J C, et al. A Comparison of Activity Analysis of γ Radionuclides in Water[J]. Acta Metrologica Sinica, 2019, 40(5): 914-919.
[12]JJF 1248-2010 通道式车辆放射性监测系统校准规范[S]. 北京: 中国质检出版社, 2010.