Abstract:A dynamic analysis method of supraharmonics based on sliding-window TLS-ESPRIT(SWTLS-ESPRIT)is proposed. Firstly,a certain length of supraharmonics voltage and current signals was cut into many equal-length consecutive data blocks by rectangle window. For each data block,the number of supraharmonics is estimated.Secondly,the frequency and attenuation factor of the supraharmonics are estimated by the basic TLS-ESPRIT algorithm.Then the amplitude and phase of the supraharmonics are calculated using least square algorithm.Finally,the supraharmonics spectrum is displayed in three dimensions to realize the dynamic analysis of supraharmonics.The simulation analysis and the verification results of two kinds of nonlinear loads show that the proposed method is a more accurate measurement method for further study of supraharmonics,which can not only accurately estimate the supraharmonics frequency,attenuation factor,amplitude and phase with higher frequency resolution,but also can showthe time-varying characteristicof the supraharmonics bythe three-dimensional image.
1 R?nnbergS K., BollenM H.J., AmarisH, et al. On waveform distortion in the frequency range of 2kHz~150kHz—Review and research challenges[J]. Electric Power Systems Research, 2017, 150: 1-10.
2 KlattM, MeyerJ, SchegnerP, et al. Emission levels above 2kHz-laboratory results and survey measurements in public low voltage grids[C]//22nd International Conference and Exhibition on Electricity Distribution. Stockholm, Sweden. 2013: 1168-1168.
3 TaskforceE M I. Study report on electromagnetic interference between electrical equipment/systems in the frequency range below 150kHz[R]. CENELEC SC 205A Mains communicating systems, 2015.
4 Agudelo-MartínezD, LimasM, PavasA, et al. Supraharmonic bands detection for low voltage devices[C]//IEEE 17th International Conference on Harmonics and Quality of Power. Belo Horizonte, Brazil. 2016: 1003-1009.
5 MartínezD A, PavasA. Current supraharmonics identification in commonly used low voltage devices[C]//2015 IEEE Workshop on Power Electronics and Power Quality Applications. Bogota, Colombia. 2015: 1-5.
6 LarssonA, BollenM. Towards a standardized measurement method for voltage and current distortion in the frequency range 2 to 150kHz[C]//22nd International Conference and Exhibition on Electricity Distribution. Stockholm, Sweden. 2013: 1-4.
7 KlattM, MeyerJ, SchegnerP. Comparison of measurement methods for the frequency range of 2kHz to 150kHz[C]//IEEE 16th International Conference on Harmonics and Quality of Power. Bucharest, Romania. 2014: 818-822.
8 陆祖良, 杨雁, 黄璐, 等. 基于阶梯波的周期非正弦电压精密测量——阶梯波研究之四[J]. 计量学报, 2019, 40(3): 481-490. LuZ L, YangY, HuangL, et al. Precision Measurement of Non-sinusoidal VoltageBased on Staircase Waveform[J]. ActaMetrologiaSinica, 2019, 40(3): 481-490.
9 ZhuangS Y, ZhaoW, WangQ, et al. Four harmonic analysis and energy metering algorithms based on a new cosine window function[J]. The Journal of Engineering, 2017, 2017(14): 2678-2684.
10 WrightP S. Short-time Fourier Transformsand Wigner-Ville Distributions Appliedto the Calibration of Power Frequency HarmonicAnalyzers[J]. IEEE Transactionson Instrumentationand Measurement, 1999, 48(2): 475-478.
11 BarrosJ, DiegoR I. Analysis of harmonics in power systems using the wavelet-packet transform[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(1): 63-69.
12 ZygarlickiJ, MroczkaJ. Prony’s method used for testing harmonics and interharmonics in electrical power systems[J]. Metrology and Measurement Systems, 2012, 19(4): 659-672.
13 BertoccoM, FrigoG, NarduzziC, et al. Resolution enhancement by compressive sensing in power quality and phasor measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(10): 2358-2367.
14 SchmidtR. Multiple emitter location and signal parameter estimation[J]. IEEE transactions on antennas and propagation, 1986, 34(3): 276-280.
15 RaoB D, HariK V S. Performance analysis of root-MUSIC[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1939-1949.
16 RoyR, KailathT. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on acoustics, speech, and signal processing, 1989, 37(7): 984-995.
17 GuIY H, BollenM H J. Estimating interharmonics by using sliding-window esprit[J]. IEEE Transactions on Power Delivery, 2008, 23(1): 13-23.
18 RissanenJ. A Universal prior for integers and estimation by minimum description length[J]. The Annals of statistics, 1983, 11(2): 416-431.
19 WuH T, YangJ F, ChenF K. Source number estimator using gerschgorin disks[C]//IEEE International Conference on Acoustics, speech, and signal processing. Adelaide, SA, Australia. 1994: IV/261-IV/264.
20 梁志国. 正弦波拟合参数的不确定度评定[J]. 计量学报, 2018, 39(6): 888-894. LiangZ G. The Measurement Uncertainty of Curve-fit Parameters of Sinusoidal[J]. Acta Metrologia Sinica, 2018, 39(6): 888-894.
21 陈国志. 电力谐波和间谐波参数估计算法研究[D]. 杭州: 浙江大学, 2010.
22 王永良, 陈辉, 彭应宁. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004.
23 蔡涛, 段善旭, 刘方锐. 基于实值MUSIC算法的电力谐波分析方法[J]. 电工技术学报, 2009, 24(12): 149-155. CaiT, DuanS X, LiuF R. Power harmonic analysis based on real-valued spectral MUSIC algorithm[J]. Transactions of China Electrotechnical Society, 2009, 24(12): 149-155.