基于最大幅值变分模态分解和均方根熵的滚动轴承故障诊断
孟宗1 , 岳建辉1 , 邢婷婷1,2 , 李晶1 , 殷娜1
1.燕山大学电气工程学院, 河北 秦皇岛 066004
2.唐山工业职业技术学院, 河北 唐山 063000
Rolling Bearing Fault Diagnosis Based on Maximum Amplitude Variational Mode Decomposition and Root Mean Square Entropy
MENG Zong1 , YUE Jian-hui1 , XING Ting-ting1,2 , LI Jing1 , YIN Na1
1.Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2.Tangshan Polytechnic College, Tangshan, Hebei 063000, China
摘要 针对变分模态分解中模态个数的设定会对分解结果产生重要影响的问题,提出一种求取最优分解层数的方法,该方法以瞬时频率的幅值特性为依据,通过分析变分模态分解过程中,各分量最大幅值之间的关系来确定最佳分解参数;均方根熵可以反映不同振动信号的能量值,以信号均方根熵为故障特征参量,通过优化支持向量机建立故障分类模型,实现故障模式分类。将基于最大幅值变分模态分解和均方根熵的故障诊断方法应用于滚动轴承实测信号中,实验结果表明基于最大幅值变分模态分解和均方根熵的方法能够有效识别滚动轴承运行状态,识别准确率高达98.75%。
关键词 :
计量学 ,
滚动轴承 ,
故障诊断 ,
变分模态分解 ,
均方根熵 ,
支持向量机
Abstract :The setting of modal number in the variational mode decomposition is very important for the decomposition results, based on this, a method to obtain the optimal decomposition layer number is proposed. The method is based on amplitude characteristics of the instantaneous frequencies and determines the optimal decomposition parameter by analyzing the relationship between the maximum amplitude of each component in the variational mode decomposition process. The root mean square entropy can reflect the energy of different vibration signals and is used as the characteristic parameter of the fault. And a fault classification model is established by optimized support vector machine to realize fault patterns classification. The fault diagnosis method based on maximum amplitude variational mode decomposition and root mean square entropy is applied to the measured signal of rolling bearings. The results show that the method based on maximum amplitude variational mode decomposition and root mean square entropy can identify rolling bearing running state efficiently and realize rolling bearing fault diagnosis. The recognition accuracy of this method is 98.75%.
Key words :
metrology
rolling bearing
fault diagnosis
variational mode decomposition
root mean square entropy
support vector machine
收稿日期: 2018-07-11
基金资助: 国家自然科学基金 (51575472); 河北省自然科学基金(E2019203448)
作者简介 : 孟宗(1977-), 男, 河北保定人, 燕山大学教授、博士研究生导师。主要从事振动信号分析与处理、旋转机械状态监测与故障诊断方面的的研究。Email: mzysu@ysu.edu.cn
引用本文:
孟宗, 岳建辉, 邢婷婷, 李晶, 殷娜. 基于最大幅值变分模态分解和均方根熵的滚动轴承故障诊断[J]. 计量学报, 2020, 41(4): 455-460.
MENG Zong, YUE Jian-hui, XING Ting-ting, LI Jing, YIN Na. Rolling Bearing Fault Diagnosis Based on Maximum Amplitude Variational Mode Decomposition and Root Mean Square Entropy. Acta Metrologica Sinica, 2020, 41(4): 455-460.
链接本文:
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2020.04.011 或 http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I4/455
1 李舜酩, 郭海东, 李殿荣, 等. 振动信号处理方法综述[J]. 仪器仪表学报, 2013, 34(8): 1907-1915. LiS M, GuoH D, LiD R, et al. Review of vibration signal processing methods[J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1907-1915.
2 孟宗,张圆圆,周明军,基于关联维数和线段聚类的滚动轴承故障诊断[J]. 计量学报, 2019, 40(1): 100-106. MenZ, ZhangY Y, ZhouM J, et al. Fault Diagnosis of Rolling Bearing Based on Correlation Dimension and Segment Clustering[J]. Acta Metrologica Sinica, 2019, 40(1): 100-106.
3 DragomiretskiyK, ZossoD. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
4 郑慧峰, 曹文旭, 王月兵, 等. 基于经验模态分解的聚焦超声非线性声场检测[J]. 计量学报, 2017, 38(5): 616-620. Zheng HuF, CaoW X, WangY B, et al. The Focused Ultrasound Nonlinear Acoustic Field Detection Method Based on Empirical Mode Decomposition [J]. Acta Metrologica Sinica, 2017, 38(5): 616-620.
5 孟宗, 赵东方, 李晶, 等. 基于局部均值分解多尺度模糊熵和灰色相似关联度的滚动轴承故障诊断[J]. 计量学报, 2018, 39(2): 231-236. MengZ, ZhaoD F, LiJ, et al. Rolling Bearing Fault Diagnosis Based on Local Mean Decomposition Multi-scale Fuzzy Entropy and Grey Similar Incidence[J]. Acta Metrologica Sinica, 2018, 39(2): 231-236.
6 武英杰, 刘长良, 甄成刚, 等. 基于变分模态分解的齿轮箱状态监测[J]. 机械传动, 2016, 40(1): 161-164. WuY J, LiuC L, ZHENC G, et al. Gearbox condition monitoring based on variational mode decomposition[J]. Journal of Mechanical Transmission, 2016, 40(1): 161-164.
7 付文龙, 周建中, 张勇传. 基于OVMD与SVR的水电机组振动趋势预测[J]. 振动与冲击, 2016, 35(8): 36-40. FuW L, ZhouJ Z, ZhangY C. Vibration trend prediction of hydroelectric generating unit based on OVMD and SVR[J]. Journal of Vibration and Shock, 2016, 35(8): 36-40.
8 杨宇, 罗鹏, 程军圣. 广义变分模态分解及其在齿轮箱复合故障诊断中的应用[J]. 中国机械工程, 2017, 28(9): 1069-1073. YangY, LuoP, ChengJ S. GVMD and Its Applications in Composite Fault Diagnosis for Gearboxes[J]. China Mechanical Engineering, 2017, 28(9): 1069-1073.
9 何志坚,周志雄,黄向明. 基于变分模态分解的关联维数及相关向量机的刀具磨损状态监测[J]. 计量学报, 2018, 39(2): 182-186. HeZ J, ZhouZ X, HuangX M. Tool Wear State Monitoring Based on Variational Mode Decomposition and Correlation Dimension and Relevance Vector Machine[J]. Acta Metrologica Sinica, 2018, 39(2): 182-186.
10 孟宗, 季艳, 闫晓丽. 基于DEMD和模糊熵的滚动轴承故障诊断方法研究[J]. 计量学报, 2016, 37(1): 56-61. MengZ, JiY, YanX L. Rolling Bearing Fault Diagnosis Based on Differential-based Empirical Mode Decomposition and Fuzzy Entropy[J]. Acta Metrologica Sinica, 2016, 37(1): 56-61.
11 谢平, 王一凡, 江国乾, 等. 基于样本熵的风力发电机早期故障检测[J]. 计量学报, 2017, 38(5): 626-630. XieP, WangY F, JiangG Q, et al. Incipient Fault Detection of Generators in Wind Turbines Based on Sample Entropy[J]. Acta Metrologica Sinica, 2017, 38(5): 626-630.
12 丁闯, 张兵志, 冯辅周, 等. 局部均值分解和排列熵在行星齿轮箱故障诊断中的应用[J]. 振动与冲击, 2017, 36(17): 55-60. DingC, ZhangB Z, FengF Z, et al. Application of local mean decomposition and permutation entropy in fault diagnosis of planetary gearboxes[J]. Journal of Vibration and Shock, 2017, 36(17): 55-60.
13 SunJ D, XiaoQ Y, WenJ T, et al. Natural gas pipeline leak aperture identification and location based on local mean decomposition analysis[J]. Measurement, 2016, 79: 147-157.
14 张淑清, 邢婷婷, 何红梅, 等. 基于VMD及广义分形维数矩阵的滚动轴承故障诊断[J]. 计量学报, 2017, 38(4): 439-443. ZhangS Q, XingT T, HeHo M, et al. Bearing Fault Diagnosis Method Based on VMD and Generalized Fractal Dimension Matrix[J]. Acta Metrologica Sinica, 2017, 38(4): 439-443.
[1]
贾超,蔡杰,熊朝晖. 不同传热方式下温度传感器动态特性研究 [J]. 计量学报, 2020, 41(5): 563-566.
[2]
邓千封,张亮,方立德,王池,刘洋. 烟道流量计量标准装置 [J]. 计量学报, 2020, 41(5): 567-572.
[3]
高原,陈川,王晶. 2019新型冠状病毒的抗原抗体检测 [J]. 计量学报, 2020, 41(5): 513-517.
[4]
陆小军,忻智炜,何林锋. 塑闪型车载式放射性探测系统的最小可探测活度的估算 [J]. 计量学报, 2020, 41(5): 627-632.
[5]
程淑红,马晓菲,张仕军,张丽. 基于多任务分类的吸烟行为检测 [J]. 计量学报, 2020, 41(5): 538-543.
[6]
张玉燕,李永保,温银堂,张芝威. 基于CT图像的金属点阵结构内部缺陷检测方法 [J]. 计量学报, 2020, 41(5): 544-550.
[7]
侯培国,赵梓建,宋涛. 基于四元数最少特征点的相机位姿估计 [J]. 计量学报, 2020, 41(5): 551-557.
[8]
余清华,沈小青,从波,王天云,邱斌,陈思. EVM可控的数字调制信号的产生方法研究 [J]. 计量学报, 2020, 41(5): 608-613.
[9]
谢胜龙,张为民,鲁玉军,张文欣,朱俊江,任国营. 基于一维卷积神经网络的房颤智能诊断方法研究 [J]. 计量学报, 2020, 41(5): 620-626.
[10]
颜晓军,扈蓓蓓,李亚琭,吴康,游立. 一种新型的交流阻抗计量标准装置 [J]. 计量学报, 2020, 41(5): 602-607.
[11]
史鹏飞,倪大志,王晓文,赵伟. 静电电压表校准装置中平板电极对电势分布的影响 [J]. 计量学报, 2020, 41(5): 597-601.
[12]
邢雪亮,甘文波,蒋朝根. 基于机器视觉的航空铆钉尺寸检测技术 [J]. 计量学报, 2020, 41(5): 518-523.
[13]
施慧,高思田,黄鹭,沈小燕. 音叉式AFM探针针尖与表面接近特性的研究 [J]. 计量学报, 2020, 41(5): 524-528.
[14]
孙淼,黄鹭,高思田,王智,董明利. 多角度动态光散射法的纳米颗粒精确测量 [J]. 计量学报, 2020, 41(5): 529-537.
[15]
席禹,陈波,袁智勇,陈浩敏,蒋愈勇,杨占杰,王建邦. 配电自动化系统主站网络化在线测试技术研究 [J]. 计量学报, 2020, 41(5): 614-619.