Inspection on Surface Morphology and Sphericity Error of ICF Capsule
FEI Zhi-gen1, WANG Kai-chuang1, ZHOU Qiang2, GONG Xiao-yun1
1.Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
2.Henan Weihua Group Co. Ltd, Xinxiang, Henan 453400, China
Abstract:In order to accurately measure the surface morphology and sphericity error of ICF capsule, a five-axis coordinate measuring machine is designed and the laser probe based onconoscopicholography is used. Firstly, according to the structural characteristics of the capsule surface, the sphericity error evaluation algorithm based on least squares is improved.Then, the overall configuration of a five-axis coordinate measuring machine(CMM)is introduced as an experimental platform, the measurement mathematical model of the CMM is deduced. The points on the capsule surface can be collected under a variety of gestures in the non-contact way. Finally, five measurement were made under the same working condition, the results of the experiments show that the average value of sphericity error of capsule is 0.0021mm and its standard deviation is 2.07×10-4mm. The proposed method can meet the measurement requirement of high accuracy and high stability upon the sphericity error of capsule.
1 王淦昌. 21世纪主要能源展望[J]. 核科学与工程, 1998,18(2): 97-108. WangG C. The prospect of main energy source in 21 century[J]. Chinese Journal of Nuclear Science and Engineering, 1998, 18(2): 97-108.
2 向世清. 激光驱动核聚变研究进展[J]. 科学, 2014, 66(5): 22-25. XiangS Q. Progress in laser-driven nuclear fusion[J]. Science, 2014, 66(5): 22-25.
3 张林, 杜凯. 激光惯性约束聚变靶技术现状及其发展趋势[J]. 强激光与粒子束, 2013, 25(12): 3091-3097. ZhangL, DuK. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097.
4 BlackwellB D. Design and characterization of the magnetized plasma interaction experiment (MAGPIE): A new source for plasma-material interaction studies[J]. Plasma Sources Science & Technology, 2012, 21: 1-7.
5 LucibellaM. More basic research at the National Ignition Facility[J]. APS NewsⅡ, 2014, 23(6): 1.
6 NuckollsJ, WoodL, ThiessenA, et al. Laser compression of matter to super-high densities: Thermo nuclear(CTR)application [J]. Nature, 2015, 239(239): 139-142.
7 MosesE I. The National Ignition Facility: The worlds largest optics and laser system[C]. Proc of SPIE, San Jose, CA, USA, 2003.
8 RiethM, DudarevS L, GonzalezS M, et al. Recent progress in research on tungsten material for nuclear fusion applications in Europe[J]. Journal of Nuclear Materials, 2013, 432(1): 482-500.
9 ChengB L. Scaling laws for ignition at the National Ignition Facility from first principles[J]. Physical Review E, 2013, 88(4): 041101.
10 蒲昱东, 陈伯伦, 黄天晅, 等. 激光间接驱动惯性约束聚变内爆物理实验研究[J]. 强激光与粒子束, 2015, 27(3): 129-140. PuY D, ChenB L, HuangT X, et al. Experimental studies of implosion physics of indirect-drive inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27(3): 129-140.
11 TangJ, ZhiyongX, DuA, et al. Design and fabrication of a CH/RF/CH Tri-layer perturbation target for hydrodynamic instability experiments in ICF[J]. Journal of Fusion Energy, 2016, 35(2): 357-364.
12 HainesB M. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosion[J]. Physics of Plasmas, 2015, 22(8): 082710.
13 王明达, 高党忠, 刘元琼, 等. 扫描电子显微镜测量靶丸表面形貌[J]. 原子能科学技术, 1999, 33(4): 290-293. WangM D, GaoD Z, LiuY Q, et al. Surface morphology inspection of capsule with scanning electron microscope[J]. Atomic Energy Science and Technology, 1999, 33(4): 290-293.
14 SingletonR M, WeinsteinB W, HendricksC D. X-ray measurement of laser fusion targets using least squares fitting[J]. Applied Optics, 1979, 18(24): 4116-4123.
15 刘元琼, 罗青, 王明达. X射线法测量ICF靶丸参数中表面轮廓法的应用[J]. 强激光与粒子束, 2000, 12(1): 69-71. LiuY Q, LuoQ, WangM D. X-ray measurement of ICF target using surface profiler scanning[J]. High Power Laser and Particle Beams, 2000, 12(1): 69-71.
16 杨冬, 虞孝麒, 龚达涛. X射线法测量的ICF靶丸参数的图像分析[J]. 强激光与粒子束, 2004, 16(12): 1553-1557. YangD, YuX L, GongD T. Image analysis of ICF target by X-ray measurement[J]. High Power Laser and Particle Beams, 2004, 16(12): 1553-1557.
17 SommargrenG E. Phase shifting diffraction interferometry for measuring extreme ultraviolet optics[J]. OSA Trends in Optics and Photonics, 1996, 4: 108-112.
18 卢丙辉, 刘炳国, 孙和义, 等. 基于子孔径拼接的衍射干涉靶丸形貌检测技术[J]. 强激光与粒子束, 2016, 28(2): 1-5. LuB H, LiuB G, SunH Y, et al. Technology of target inspection by diffraction interferometer based on sub-aperture stitching[J]. High Power Laser and Particle Beams, 2016, 28(2): 1-5.
19 徐永祥, 陈磊, 朱日宏, 等. 微小球面曲率半径的测量研究[J]. 仪器仪表学报, 2006, 27(9): 1159-1162. XuY X, ChenL, ZhuR H, et al. Study on the measurement of radii of curvature of mini spheres. Chinese Journal of Scientific Instrument, 2006, 27(9): 1159-1162.
20 CookR, OverturfG E, BuckleyS R, et al. Production and characterization of doped mandrels for inertial-confinement fusion experiments[J]. J Vac Sci Technol A, 1994, 12(4): 1275-1280.
21 StephensR B, OlsonD, HuangH, et al. Complete surface mapping of ICF shells[J]. Fusion Science and Technology, 2004, 45(2): 210-213.
22 高党忠, 王明达, 刘元琼. 用原子力显微镜4π旋转技术测量靶丸表面粗糙度[J]. 强激光与粒子束, 1999, 11(3): 321-324. GaoD Z, WangM D, LiuY Q. Measurement of target surface roughness with 4πturning technology of AFM[J]. High Power Laser and Particle Beams, 1999, 11(3): 321-324.
23 赵学森, 孙涛, 高党忠, 等. 靶丸表面轮廓形貌AFM精密测量及特性评价[J]. 强激光与粒子束, 2005, 17(12): 1847-1851. ZhaoX S, SunT, GaoD Z, et al. Measurement and characteristic evaluation of target circumferential topography with AFM[J]. High Power Laser and Particle Beams, 2005, 17(12): 1847-1851.
24 SiratetG Y, PsaltisD. Conoscopic Holography[J]. Opt Lett , 1985, 10(1): 4-6.
25 林启敬, 吴昊, 张福政, 等. Cu/Ti纳米薄膜表面形貌的分形表征研究[J]. 计量学报, 2018, 39(5): 593-597. LinQ Z, WuH, ZhangF Z, et al. Research on Fractal Characterization of the SurfaceMorphology of Cu/Ti Nano Thin Film[J]. Acta Metrologiga Sinica, 2018, 39(5): 593-597.
26 吴乙万, 任志英, 高成辉, 等. 超精密光学镜片三维表面形貌参数评定方法研究[J]. 计量学报, 2017, 38(4): 410-415. WuY W, RenZ Y, GaoC H, et al. Study on 3D Surface Parameter Evaluation Method of Ultra Precision Optical Lenses[J]. Acta Metrologiga Sinica, 2017, 38(4): 410-415.