基于差动共焦显微技术的微区拉曼光学系统构建与实验研究
姜静子1 , 高思田2 , 黄鹭2 , 李琪2 , 连笑怡2
1.浙江理工大学机械与自动控制学院,浙江杭州 310018
2.中国计量科学研究院,北京 100029
Construction and Experimental Study of Micro-area Raman OpticalSystem Based on Differential Confocal Microscopy Technology
JIANG Jing-zi1 , GAO Si-tian2 , HUANG Lu2 , LI Qi2 , LIAN Xiao-yi2
1.Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
2.National Institute of Metrology, Beijing 100029, China
摘要 研制了一种基于差动共焦显微技术的微区拉曼光学系统装置,对无机样品进行微区拉曼光谱探测。传统显微共焦拉曼光谱技术没有强调系统的定焦能力,而所研制的光学系统装置利用差动共焦曲线过零点与焦点位置精确对应的特性,采用反馈控制技术,具有长时间定焦功能。在微区拉曼散射信号收集时,采用多模光纤空间耦合技术,以光纤代替传统物理探测针孔,提高了环境抗干扰能力,优化了系统结构和装调性能。实验结果表明:该装置具有较高稳定性,可有效探测单壁碳纳米管在1581.510cm-1 、2708.065cm-1 特征峰处的拉曼频移及纯物质硫在153.113cm-1 、219.917cm-1 、473.322cm-1 特征峰处的拉曼频移并且实现碳管的单线检测,满足了光谱探测系统装置设计需求。
关键词 :
计量学 ,
差动共焦显微技术 ,
微区共焦拉曼光学系统 ,
光谱探测
Abstract :A micro-area Raman optical system based on differential confocal microscopy technology is developed to detect the micro-area Raman spectroscopy of inorganic samples. The traditional confocal Raman spectroscopy technology does not emphasize the focusing ability of the system, but the optical system device has the function of long-time focusing by using on the characteristic that the zero-crossing point of the differential confocal curve corresponds precisely to the focal point position and adopting feedback control technology. When collecting Raman scattering signals in micro-area, multi-mode optical fiber spatial coupling technology is used to replace traditional physical detection pinholes with optical fiber, which improves the anti-interference ability of the environment and optimizes the system structure and adjusting performance. The experimental results show that the device has high stability and can effectively detect the Raman frequency shift of single-walled carbon nanotubes at 1581.510cm-1 , 2708.065cm-1 characteristic peaks and the Raman frequency shift of pure sulfur at 153.113cm-1 , 219.917cm-1 , 473.322cm-1 characteristic peaksand realize the single-line detection of the carbontube. The device meets the design requirements of the spectral detection system.
Key words :
metrology
differential confocal microscopy techndogy
micro-area confocal Raman optical system
spectral detection
收稿日期: 2018-11-08
基金资助: 国家重点研发计划(2016YFF0200602);科技部国家重点研发专项(2016YFA0200901)
通讯作者:
高思田(1962-), 男, 天津人,中国计量科学研究院研究员, 博士, 研究方向为纳米测量、精密仪器测量。
Email: gaost@nim. ac. cn
E-mail: gaost@nim.ac.cn
作者简介 : 姜静子(1993-),女,浙江丽水人,浙江理工大学硕士研究生,主要研究方向为测试计量技术及仪器。Email: 18258244076@163.com
引用本文:
姜静子, 高思田, 黄鹭, 李琪, 连笑怡. 基于差动共焦显微技术的微区拉曼光学系统构建与实验研究[J]. 计量学报, 2020, 41(4): 399-405.
JIANG Jing-zi, GAO Si-tian, HUANG Lu, LI Qi, LIAN Xiao-yi. Construction and Experimental Study of Micro-area Raman OpticalSystem Based on Differential Confocal Microscopy Technology. Acta Metrologica Sinica, 2020, 41(4): 399-405.
链接本文:
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2020.04.002 或 http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I4/399
1 RamanC V, KrishnanK S. A new type of secondary radiation[J]. Nature, 1928, 121: 501-502.
2 王雪花, 程明霄, 朱倩, 等. 激光显微拉曼光谱仪的设计与标定[J]. 仪表技术与传感器, 2014, (7): 61-63. WangX H, ChengM X, ZhuQ, et al. Design and Calibration of Laser Micro-Raman Spectrometer[J]. Instrument Technique and Sensor, 2014, (7): 61-63.
3 姚雅萱, 任玲玲, 高思田,等. 拉曼光谱仪相对强度标准物质量值表达及不确定度评定[J]. 计量学报, 2017, 38(3): 376-379. YaoY X, RenL L, GaoS L,et al. Value Expression and Uncertainty Evaluation of Relative Intensity Calibration Reference Material for Raman Spectroscopy[J]. ActaMetrologica Sinica, 2017, 38(3): 376-379.
4 杨永梅. 拉曼光谱技术应用的综述[J]. 科技传播, 2010,5(20):115. YangY M. The Application of Roman Spectroscopy Technology[J]. Public Communication Of Science & Technology, 2010, 5(20): 115.
5 孙素琴, 周群, 张宣, 等. 傅里叶变换拉曼光谱法无损鉴别植物生药材[J]. 分析化学, 2002, 30(2): 140-143. SunS Q, ZhouQ, ZhangX, et al. Undamaged Determination of Raw Plant Medicinal Drugs with Fourier Transform Raman Spectroscopy[J]. Chinese Journal Of Analytical Chemistry, 2002, 30(2): 140-143.
6 倪丹丹, 王伟伟, 姚建林, 等. 可循环表面增强拉曼光谱基底的制备及其应用[J]. 光谱学与光谱分析, 2011, 31(2): 394-397. NiD D, WangW W, YaoJ L,et al. Fabrication of Reproducible Surface Enhanced Raman Scattering Substrate and Its Application[J]. Spectroscopy And Spectral Analysis, 2011, 31(2): 394-397.
7 赵晓杰, 江山, 陆冬生, 等. 激发光源紫外-可见连续可调谐共振拉曼光谱测量系统[J]. 光谱学与光谱分析, 1997, (1): 66-70. ZhaoX J, JiangS, LuD S,et al. A Resonance Raman Spectrometer With UV Visble Continuously Tunable Excitation Lines[J]. Spectroscopy Spectral Analysis, 1997, (1): 66-70.
8 赵维谦, 邱丽荣, 郭俊杰, 等. 差动共焦拉曼光谱测试方法. 中国, ZL200810115601.1[P]. 2008.
9 赵维谦, 崔晗, 邱丽荣, 等. 激光差动共焦图谱显微成像方法与装置:ZL 201310026956.4[P].2013-05-08.
10 崔晗. 高空间分辨激光差动共焦拉曼光谱成像方法与技术研究[D]. 北京: 北京理工大学, 2016.
11 周昭, 陈和, 张寅超, 等. 微型拉曼光谱仪杂散光分析及抑制方法的改进[J]. 光谱学与光谱分析, 2017, 37(3): 772-777. ZhouZ, ChenH, ZhangY C, et al. The Improved Suppression and Analysis of Stray Light in the Miniature Raman Spectrometer[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 772-777.
12 JabbourJ M, SalduaM A, BixlerJ N, et al. Confocal endomicroscopy: Instrumentationand medical applications [J]. Annals of Biomedical Engineering, 2012, 40(2): 378-397.
13 HarrisJ, NorrisG, ConnellG M. Characterization of Periodically Poled Materials Using Nonlinear Microscopy [J]. Optics Express, 2008, 16(8): 5667~5672.
14 TataB V R, RajB. Confocal Laser Scanning Microscopy: Applications in Material Science and Technology [J]. Bulletin of Materials Science, 1998, 21(4): 263~278.
15 毛新越, 赵维谦, 王允, 等. 激光差动共焦显微成像中的轴向快速定焦方法[J]. 光学技术, 2015, 41(5): 385-389. MaoX Y, ZhaoW Q, WangY, et al. The method of axial fast identified focus of laser differential confocal microscopy imaging[J]. Optical Technique, 2015, 41(5): 385-389.
16 舒攀, 盛忠, 邱丽荣, 等. 差动共焦显微成像高稳定三维扫描技术与系统[J]. 光学技术, 2017, 43(3): 212-216. ShuP, ShengZ, QiuL R, et al. Highly stable three-dimensional scanning technology and system in differential confocal microscopy imaging [J]. Optical Technique, 2017, 43(3): 212-216.
17 程硕. 超分辨激光差动共焦微孔测量技术研究[D]. 北京: 北京理工大学, 2015.
18 王富生, 谭久彬. 差动共焦式纳米级光聚焦探测系统的研究[J]. 光学技术, 2001, 27(3): 232-234. WangF S, TanJ B. Optical focus detection system with nanometer resolution using differential confocal microscope[J]. Optical Technique, 2001, 27(3): 232-234.
19 尹哲. 差动共焦显微探测实验系统相关技术的研究[D]. 哈尔滨:哈尔滨工业大学, 2007.
20 张雪, 葛文琦, 余锦, 等. 基于现场可编程门阵列的脉冲单纵模激光器能量稳定控制技术[J]. 中国激光, 2017 ,(8): 82-89. ZhangX, GeW Q, YuJ. Energy Stability Control Technique for Pulsed Single-Longitude-Mode Laser Based on Field Program mable Gate Array[J]. Chinese Journal of Lasers, 2017, (8): 82-89.
21 张明倩. 透/反射式针尖增强拉曼光谱术关键技术与实验研究[D]. 北京: 清华大学, 2013.
22 周奇, 高思田, 刘炳锋, 等. 大范围二维纳米位移台的控制及非线性校准的实验研究[J]. 计量学报, 2018,39(6):771-776. ZhouQ, GaoS T, LiuB F, et al. Experimental Research on the Control and Non-linear Calibration of Large-scale Two-dimensional Nanometer Displacement Stage[J]. Acta Metrologica Sinica, 2018,39(6):771-776.
23 施慧, 高思田, 黄鹭, 等. 音叉式AFM探针针尖与表面接近特性的研究[J]. 计量学报, 2020, 待发表. ShiH, GaoS T, HuangL, et al. Research of Approaching Characteristics between the Tip and the Surface of Atomic Force Microscope based on Tuning Fork Probe[J]. Acta Metrologica Sinica, 2020. To be published.
24 施玉书, 连笑怡, 王艺瑄, 等. AFM扫描过程的模拟及针尖形状反求[J]. 计量学报, 2019, 40(2):177-182. ShiY S, LianX Y, WangY X, et al. Simiulation of AFM Scanning Process and Tip Shape Estimation[J]. Acta Metrologica Sinica, 2019, 40(2):177-182.
25 庞华峰, 姚辉璐, 杨庆怡, 等. 激光光镊拉曼光谱仪信噪比测量研究[J]. 物理与工程, 2008, 18(5): 24-26. PangH F, YaoH L, YangQ Y, et al. Signal-To-Noise Ratio Measurment Of The Laser Tweezers Raman Spectroscopy[J]. Physics And Engneering, 2008, 18(5): 24-26.
26 任玲玲, 赵迎春, 姚雅宣, 等. 几种代表性纯物质拉曼光谱有效测量程序的确定[J]. 现代测量与实验室管理, 2014, (6): 3-6. RenL L, ZhaoY C, YaoY X, et al. Determination of effective measurement procedures for Raman spectra of representative pure substances[J]. Advanced Measurement and Laboratory Management, 2014, (6): 3-6.
[1]
贾超,蔡杰,熊朝晖. 不同传热方式下温度传感器动态特性研究 [J]. 计量学报, 2020, 41(5): 563-566.
[2]
邓千封,张亮,方立德,王池,刘洋. 烟道流量计量标准装置 [J]. 计量学报, 2020, 41(5): 567-572.
[3]
高原,陈川,王晶. 2019新型冠状病毒的抗原抗体检测 [J]. 计量学报, 2020, 41(5): 513-517.
[4]
史鹏飞,倪大志,王晓文,赵伟. 静电电压表校准装置中平板电极对电势分布的影响 [J]. 计量学报, 2020, 41(5): 597-601.
[5]
邢雪亮,甘文波,蒋朝根. 基于机器视觉的航空铆钉尺寸检测技术 [J]. 计量学报, 2020, 41(5): 518-523.
[6]
施慧,高思田,黄鹭,沈小燕. 音叉式AFM探针针尖与表面接近特性的研究 [J]. 计量学报, 2020, 41(5): 524-528.
[7]
孙淼,黄鹭,高思田,王智,董明利. 多角度动态光散射法的纳米颗粒精确测量 [J]. 计量学报, 2020, 41(5): 529-537.
[8]
席禹,陈波,袁智勇,陈浩敏,蒋愈勇,杨占杰,王建邦. 配电自动化系统主站网络化在线测试技术研究 [J]. 计量学报, 2020, 41(5): 614-619.
[9]
董祥辰,李冰莹,李永新,王海涛. 皮带秤动态称重用神经网络算法设计 [J]. 计量学报, 2020, 41(5): 573-577.
[10]
陆盛康,冯浩,赵浩. 新型旋转角加速度传感器特性标定系统的研究 [J]. 计量学报, 2020, 41(5): 578-584.
[11]
田立勇,张一辙. 基于局部均值分解与快速独立成分分析的潜水泵故障诊断 [J]. 计量学报, 2020, 41(5): 585-591.
[12]
刘岩,翟玉卫,李灏,韩伟,荆晓冬,梁法国. 基于相机的光反射热成像误差分析 [J]. 计量学报, 2020, 41(5): 558-562.
[13]
冯建,胡俊杰,胡斌. 交流注入式电池内阻测试仪电阻参数的校准方法 [J]. 计量学报, 2020, 41(5): 592-596.
[14]
陆小军,忻智炜,何林锋. 塑闪型车载式放射性探测系统的最小可探测活度的估算 [J]. 计量学报, 2020, 41(5): 627-632.
[15]
程淑红,马晓菲,张仕军,张丽. 基于多任务分类的吸烟行为检测 [J]. 计量学报, 2020, 41(5): 538-543.