2025年05月26日 星期一 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
  2020, Vol. 41 Issue (4): 441-447    
  力学计量 本期目录 | 过刊浏览 | 高级检索 |
气动肌肉的最小二乘支持向量机迟滞模型
谢胜龙1,任国营2
1. 中国计量大学机电工程学院
2. 中国计量科学研究院
The hysteresis modeling of pneumatic muscle based on least squares support vector machine approach
全文: PDF (0 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 气动肌肉运动过程中迟滞现象的建模与补偿控制对于其精确的运动控制具有重要意义。针对传统迟滞模型存在的待辨识参数多、参数辨识过程复杂和辨识精度低等问题,采用最小二乘支持向量机对气动肌肉的位移/气压迟滞开展建模研究。该方法通过非线性映射将原始数据空间映射到高维空间,从而将原系统的非线性问题变成高维空间中的线性问题,借助于最小二乘法求解该线性方程组,从而提高其求解速度及收敛精度。在气动肌肉迟滞特性实验的基础上,采用最小二乘支持向量机方法建立其位移/气压迟滞的数学模型,并与经典的PI模型进行对比,结果表明,采用最小二乘支持向量机建立的数学模型具有更高的建模精度,均方差和平均误差等各项误差指标显著减小,相比PI模型分别减小了99.21%和99.1%。从而为后续气动肌肉的迟滞补偿控制提供了有效的手段。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢胜龙
任国营
关键词 计量学气动肌肉迟滞建模最小二乘支持向量机PI模型参数辨识metrology pneumatic muscle (PM) hysteresis modeling least squares support vector machine (LS-SVM) PI model parameter identification    
Abstract:The modeling and compensation control of hysteresis in pneumatic muscle(PM) are of great significance to the accurate motion control. The traditional hysteresis modeling methods have series problems such as many parameters to be identified, complex parameter identification process and low identification accuracy. Thus the least squares support vector machine (LS-SVM) approach is proposed to characterize the hysteresis phenomenon of pneumatic muscle. This method maps the original data space to the high-dimensional space by non-linear mapping, thus the non-linear problem of the original system is transformed into a linear problem in the high-dimensional space, the least square method is used to solve the system of linear equations, which improves the speed of solution and convergence accuracy. The mathematical model of displacement/pressure hysteresis on pneumatic muscle was established by using LS-SVM method, on the basis of experiments on hysteresis characteristics of pneumatic muscle. The calculation results show that the mathematical model established by least squares support vector machine has higher modeling accuracy and various error indices such as mean variance and mean error are significantly reduced, which reduce 99.21% and 99.1% respectively compared with the classical PI model. Thus providing an effective means for subsequent hysteresis compensation control of pneumatic muscle.
收稿日期: 2019-12-20      发布日期: 2020-04-15
基金资助:折纸型气动肌肉的优化设计与迟滞补偿控制方法研究;多自由度系统位置与姿态过程控制计量关键技术研究
通讯作者: 任国营     E-mail: rengy@nim.ac.cn
引用本文:   
谢胜龙 任国营. 气动肌肉的最小二乘支持向量机迟滞模型[J]. , 2020, 41(4): 441-447.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I4/441
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn