Abstract:According to the technical requirements of the satellite attitude and orbit control subsystem semi-physical simulation system, a calibration device for the solar sensor simulator is described. The calibration device uses FPGA and AVR microcontroller as the control core, micro-board computer to simulate dynamic computer, which uploads and downloads instructions through the network port. What’s more, the calibration device builts signal conditioning circuit, high-precision acquisition module, data solving module inside, etc. The calibration device is highly integrated, which replaces the complex calibration system composed of digital instruments and dynamics computers, effectively reduces the cost, improves the efficiency by about 40%, and realizes the fast online calibration of the solar sensor simulator in the whole process.
[1]章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998: 157-176.
[2]张怡文, 刘曌, 陈杭. 卫星姿轨控半物理仿真测试系统[J]. 计算机测量与控制, 2017, 25(11): 1-3.
Zhang Y W, Liu Y, Chen H. Semi-physical simulation test system for satellite attitude and orbit control [J]. Computer Measurement and Control, 2017, 25 (11): 1-3.
[3]Alldridge W J. AOCS technology [attitude and orbit control subsystem][C]//UK Interest in Horizon 2000—The ESA Space Science Programme. 1990, 6(15): 711-719.
[4]Omer M, Saeed Q, Suddle M. R.. A simulation framework for a reaction wheel based AOCS[C]//7th International Multi Topic Conference. 2003, 12(8): 298-302.
[5]曹健. 卫星惯性姿态敏感器的采集与测控系统设计与实现[D]. 北京: 中国科学院大学, 2017.
[6]张新邦, 林来兴, 索旭华. 卫星控制系统仿真技术[J]. 计算机仿真, 2000, (2): 57-59.
Zhang X B, Lin L X, Suo X H. Simulation technology of satellite control system [J]. Computer Simulation, 2000, (2): 57-59.
[7]刘斌, 屈卫东, 李英波. 卫星姿轨控分系统仿真测试平台的设计与实现[J]. 自动化博览, 2010, 27(8): 94-96.
Liu B, Qu W D, Li Y B. Design and Implementation of Simulation Test Platform for Satellite Attitude and Orbit Control System [J]. Automation Expo, 2010, 27 (8): 94-96.
[8]赵光权, 张毅刚, 马勋亮, 等. 太阳敏感器电模拟器设计[J]. 计算机测量与控制, 2011, 19(8): 2019-2021+2032.
Zhao G Q, Zhang Y G, Ma X L, et al. Design of Electric Simulator for Solar Sensors [J]. Computer Measurement & Control, 2011, 19 (8): 2019-2021+2032.
[9]刘石. 高精度准直式太阳模拟器及其关键技术研究[D]. 长春: 长春理工大学, 2014.
[10]陈华庆. 基于FPGA的数字太敏检测系统研究与设计[D]. 南京: 南京信息工程大学, 2016.
[11]朱江淼, 张菁, 黄艳, 等. 卫星定位终端入栏检测算法的研究与实现[J]. 计量学报, 2019, 40(6): 1112-1116.
Zhu J M, Zhang J, Huang Y, et al. Research and Implementation on Algorithm for Entry Fence Detection of Satellite Positioning Terminal[J]. Acta Metrologica Sinica, 2019, 40(6): 1112-1116.
[12]常武军. 卫星太阳敏感器数据分析方法研究[C]//中国通信学会卫星通信委员会、中国宇航学会卫星应用专业委员会, 中国通信学会. 第十三届卫星通信学术年会论文集. 2017.
[13]朱江, 李振华. 卫星导航接收机时延测定技术研究[J]. 计量学报, 2019, 40(5): 910-913.
Zhu J,Li Z H. Research on Time Delay Measurement Technology for Satellite Navigation Receivers[J]. Acta Metrologica Sinica, 2019, 40(5): 910-913.
[14]梁欣. 航天测控设备自动化测试系统不确定度分析[J]. 甘肃科技纵横, 2019, 48(1): 18-20.
Liang X. Uncertainty Analysis of Automatic Testing System for Space Measurement and Control Equipment [J]. Gansu Science and Technology, 2019, 48(1): 18-20.