1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. School of Instrumentation Science & Opto-Electronics Engineering, Beihang University, Beijing 100191, China
3. School of Instrument Science & Opto-Electronics Engineering, Hefei University of Technology, Hefei,Anhui 230009, China
4. Fujian Metrology Institute, Fuzhou, Fujian 350003, China
Abstract:The coordinate measuring machine (CMM) uncertainty for evaluating the form errors-oriented measurement tasks has been systematically studied, thus the rapid and reliable evaluation of the CMM measurement uncertainty can be realized.Two uncertainty combined methods based on Guide to the Expression of Uncertainty in Measurement (GUM) and Monte Carlo method are provided.The feasibility of the evaluation method has been verified by measurement example of flatness.The experimental result shows that precision significance of uncertainty determined by GUM is unreliable, the expanded uncertainty increased by 11.1% compared with actual situation.To systematically solve the problem of the CMM uncertainty for evaluating the measurement tasks targeting form errors is typical and representative, which can be effectively applied to solve the uncertainty evaluation problems of other precision instruments.
[1]ISO/IEC GUIDE 98-3: 2008, Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measure-ment [S]. 2008.
[2]国家质量监督检验总局. GB/T 27418—2017, 测量不确定度评定和表示[S]. 2017.
[3]国家质量监督检验总局 . JJF 1059.1—2012, 测量不确定度评定与表示[S]. 2012.
[4]Cox M, Harris P. GUM anniversary issue, Foreword[J]. Metrologia, 2014, 51(4): 141-143.
[5]Bich W. Revision of the ‘Guide to the Expression of Uncertainty in Measurement’. Why and how[J]. Metrologia, 2014, 51 (4): 155-158.
[6]张国雄.三坐标测量机[M]. 天津: 天津大学出版社, 1999.
[7]Vrba I, Palencar R, Hadzistevic M, et al. Different approaches in uncertainty evaluation for measurement of complex surfaces using coordinate meas-uring machine[J]. Measurement Science Review, 2015, 15 (3): 111-118.
[8]程银宝, 陈晓怀, 王汉斌, 等. CMM尺寸测量的不确定度评定模型研究[J]. 计量学报, 2016, 37(5): 462-466.
Cheng Y B, Chen X H, Wang H B, et al.Research on Uncertainty Estimation Model of CMM for Size Measurement [J]. Acta Metrologica Sinica, 2016, 37(5): 462-466.
[9]Cappetti N, Naddeo A, Villecco F.Fuzzy approach to measures correction on Coordinate Measuring Machines: The case of hole-diameter verification[J]. Measurement, 2016, 93: 41-47.
[10]黄富贵,刘志森,赵保生. 双侧公差限产品的合格概率计算方法[J]. 计量学报, 2018, 39(4): 461-464.
Huang F G, Liu Z S, Zhao B S.A Calculation Method of Products’ Qualified Probability of Bilateral Tolerance Limit [J]. Acta Metrologica Sinica, 2018, 39(4): 461-464.
[11]“10000个科学难题”信息科学编委会. 10000个科学难题·信息科学卷[M]. 北京: 科学出版社, 2011.
[12]王汉斌, 陈晓怀, 程银宝, 等. 基于新一代GPS的产品检验符合性不确定度评定[J]. 机械工程学报, 2016, 52(24): 194-200.
Wang H B, Chen X H, Cheng Y B, et al. Evaluation of compliance uncertainty in product inspection based on the new generation GPS [J]. Journal of Mechanical Engineering, 2016, 52(24): 194-200.
[13]方兴华, 宋明顺, 顾龙芳, 等. 基于自适应蒙特卡罗方法的测量不确定度评定[J]. 计量学报, 2016, 37(4): 452-456.
Fang X H, Song M S, Gu L F, et al.Application of Adaptive Monte Carlo Method on Measurement Uncertainty Evaluation [J]. Acta Metrologica Sinica, 2016, 37(4): 452-456.
[14]Bartel T, Stoudt S, Possolo A.Force calibration using errors-in-variables regression and Monte Carlo uncerta-inty evaluation [J]. Metrologia, 2016, 53(3): 965-980.
[15]ISO 1101-2012, Geometrical product specifications (GPS)-Geometrical tolerancing-Tolerances of form, orientation, location and run-out [S]. 2012.