Abstract:Design of atomic time scale publication system for multiple laboratories is based on the modular design of atomic clock data provided by eight domestic punctual laboratories.The system includes the three modules, the processing of atomic clock data, the calculation of atomic time scale and the publication of atomic time scale data, using MATLAB for data processing and time scale calculation, and using GUI for data visualization design.The system has clear process of the algorithm, simple function modules and friendly human-machine interface.The actual data operation results show that the time difference between the integrated atomic time scale and UTC of the system is better than ±10ns, and the data release content meet the needs of the scientific research in related fields in China.
[1]张莉莉, 高源, 朱江淼, 等. AT1原子时算法的研究[J]. 电子测量技术, 2007, (11): 20-24.
Zhang L L, Gao Y, Zhu J M, et al. Research on AT1 atomic time algorithm[J]. Electronic Measurement Technology, 2007, (11): 20-24.
[2]郭吉省. UTC(NIM)原子时标驾驭研究[D]. 北京:北京工业大学, 2013.
[3]Zhang A M, Gao Y, Liang K, et al. Reconstruction of UTC (NIM)[C]//2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). Prague,Czech Republic, 2013. INSPEC Accession Number: 14025711
[4]董绍武, 王燕平, 武文俊, 等. 国际原子时及NTSC守时工作进展[J]. 时间频率学报, 2018, 41(2): 73-79.
Dong S W, Wang Y P, Wu W J, et al. Progress of TAI and timekeeping work in NTSC[J]. Journal of Time and Frequency, 2018, 41(2): 73-79.
[5]和涛, 张慧君, 李孝辉, 等. 基于UTC(NTSC)的时间频率远程校准与溯源研究[J]. 电子测量技术, 2013, 36(5): 15-20.
He T, Zhang H J, Li X H, et al. Research on time and frequency remote calibration and traceability based on UTC (NTSC)[J]. Electronic Measurement Technology, 2013, 36(5): 15-20.
[6]朱江淼, 秦慧军, 高源, 等. 基于远程联合钟组的原子时标系统的设计与实现[J]. 计量技术, 2017, (5): 19-23.
Zhu J M, Qin H J, Gao Y, et al. Design and implementation of atomic time scale of remote combined clock group System [J]. Measurement Technique, 2017, (5): 19-23.
[7]朱江淼, 孙盼盼, 高源, 等. 原子钟频差数据去噪算法的研究[J]. 计量学报, 2017, 38(4): 499-503.
Zhu J M, Sun P P, Gao Y, et al. The denoise of the atomic clock frequency differences[J]. Acta Metrologica Sinica, 2017, 38(4): 499-503.
[8]张越, 高小珣. GPS共视法定时参数的研究[J]. 计量学报, 2004,25(2): 167-170.
Zhang Y, Gao X X. Research on Timing Parameters for GPS Common-view Method[J]. Acta Metrologica Sinica, 2004,25(2): 167-170.
[9]王莉萍, 徐亮. 时频计量体系守时系统与原子时算法[J]. 上海计量测试, 2017, 44(5): 33-35, 41.
Wang L P, Xu L. Exploration of time keeping system and atomic time algorithm in time and frequency measurement system[J]. Shanghai Measurement and Testing, 2017, 44(5): 33-35, 41.
[10]沈婷梅,杨同敏,阎栋梁. 高性能铷原子钟频率长期特性参量估值算法研究[J]. 计量学报, 2019,40(5): 900-904.
Shen T M, Yang T M, Yan D L. Long-term Parameter Estimation of High Performance Rubidium Atomic Clocks[J]. Acta Metrologica Sinica, 2019,40(5): 900-904.
[11]顾亚楠, 陈忠贵, 帅平. 基于Hadamard方差的导航星座自主时间同步算法研究[J]. 中国空间科学技术, 2010, 30(1): 1-9.
Gu Y N, Chen Z G, Shuai P. Autonomous time synchronization algorithm on Hadamard variance among navigation satellites[J]. Chinese Space Science and Technology, 2010, 30(1): 1-9.
[12]屈俐俐, 李变. 频率稳定度与守时钟组配置关系研究[J]. 宇航计测技术, 2015, 35(1): 34-38.
Qu L L, Li B. Research on the Relationship of Frequency Stability and Timekeeping Clock Allocation[J]. Journal of Astronautic Metrology and Measurement, 2015, 35(1): 34-38.
[13]王玉琢,张爱敏,张越,等. 一种原子钟频率稳定度的估计方法[J]. 计量学报, 2018,39(3): 397-400.
Wang Y Z, Zhang A M, Zhang Y, et al. A Method for Estimating Frequency Stability of Atomic Clock [J]. Acta Metrologica Sinica, 2018, 39(3):397-400.
[14]李变, 屈俐俐, 高玉平, 等. 地方原子时算法研究[J]. 天文学报, 2010, 51(4): 404-411.
Li B, Qu L L, Gao Y P, et al. Local atomic time algorithm research[J]. Acta Astronomica Sinica, 2010, 51(4): 404-411.
[15]朱江淼,陈烨,高源,等. 原子钟钟差预测不确定度的建模与分析[J]. 计量学报, 2019,40(4): 714-720.
Zhu J M, Chen Y, Gao Y, et al. Modeling and Analysis of Prediction Uncertainty of Clock Difference in Atomic Clock[J]. Acta Metrologica Sinica, 2019,40(4): 714-720.