Abstract:Sentiment classification is a text classification task that extracts emotional tendencies from text. Ensemble learning combines several classifiers to achieve a better classification effect than component learners on the task of emotional classification. However, due to the different performance of component learners on data sets, the weights of component learners in the ensemble method were not well-distributed. Aiming at the weight optimization problem of component learners in ensemble learning, a classification method based on differential evolution to optimize the weights of component learners was proposed and applied to Chinese text sentiment classification. Using the classification accuracy as the fitness value, the weight combination of five component learners was optimized by differential evolution algorithm, and experiments were performed on the review corpus of the three fields. The experimental results showed that compared with the general ensemble method, the proposed classification method has better classification performance in sentiment classification.
杨梦月,卫伟,陆慧娟,卢海峰. 基于差分进化的中文情感分类集成算法研究[J]. 计量学报, 2020, 41(2): 225-230.
YANG Meng-yue,WEI Wei,LU Hui-juan,LU Hai-feng. Research on Ensemble Algorithm for Chinese Emotion Classification Based on Differential Evolution. Acta Metrologica Sinica, 2020, 41(2): 225-230.
[1]Wang S, Li D, Wei Y, et al. A Feature Selection Method Based on Fishers Discriminant Ratio for Text Sentiment Classification[J]. Expert Systems with Applications, 2011, 38(7): 8696-8702.
[2]徐小龙. 中文文本情感分析方法研究[J]. 电脑知识与技术, 2018, 14(2): 149-151.
Xu X L. A Review of Sentiment Analysis of Chinese Text[J]. Computer Knowledge and Technology, 2018, 14(2): 149-151.
[3]徐健锋, 许园, 许元辰, 等. 基于语义理解和机器学习的混合的中文文本情感分类算法框架[J]. 计算机科学, 2015, 42(6): 61-66.
Xu J F, Xu Y, Xu Y C, et al. Hybrid Algorithm Framework for Sentiment Classification of Chinese Based on Semantic Comprehension and Machine Learning[J]. Computer Science, 2015, 42(6): 61-66.
[4]王中卿. 基于不平衡数据的情感分类方法研究[D]. 苏州:苏州大学, 2012.
[5]周爱武, 马那那, 刘慧婷. 基于卡方统计的情感文本分类[J]. 微电子学与计算机, 2017, 34(8): 57-61.
Zhou A W, Ma N N, Liu H T. Sentiment Text Classification Based on Chi-square Statistics[J]. Microelectronics and Computer, 2017, 34(8): 57-61.
[6]贾强, 冯锡炜, 王志峰, 等. 基于改进的TF-IDF文本特征词提取算法研究[J]. 辽宁石油化工大学学报, 2017, 37(4): 61-64.
Jia Q, Feng X W, Wang Z F, et al. Research on Keyword Extraction Algorithm Based on Improved TF-IDF[J]. Journal of Liaoning Shihua University, 2017, 37(4): 61-64.
[7]代大明, 王中卿, 李寿山, 等. 基于情绪词的非监督中文情感分类方法研究[J]. 中文信息学报, 2012, 26(4): 103-109.
Dai D M, Wang Z Q, Li S S, et al. Unsupervised Chinese Sentiment Classification with Emotion Words[J]. Journal of Chinese Information Processing, 2012, 26(4): 103-109.
[8]唐慧丰, 谭松波, 程学旗. 基于监督学习的中文情感分类技术比较研究[J]. 中文信息学报, 2007(6): 88-94.
Tang H F, Tan S B, Cheng X Q. Research on Sentiment Classification of Chinese Reviews Based on Supervised Machine Learning Techniques[J]. Journal of Chinese Information Processing, 2007(6): 88-94.
[9]Wawre S V, Deshmukh S N. Sentiment classification using machine learning techniques[J]. International Journal of Science and Research (IJSR), 2016, 5(4): 819-821.
[10]Krogh A, Sollich P. Statistical mechanics of ensemble learning[J]. Physical Review E , 1997, 55(1): 811-825.
[11]方丁, 王刚. 基于集成学习理论的文本情感分类[J]. 计算机系统应用, 2012, 21(7): 177-181.
Fang D, Wang G. Text Sentiment Classification Based on Ensemble Learning[J]. Computer Systemsand Applications, 2012, 21(7): 177-181.
[12]高伟, 王中卿, 李寿山. 基于集成学习的半监督情感分类方法研究[J]. 中文信息学报, 2013, 27(3): 120-126.
Gao W, Wang Z Q, Li S S. Semi-Supervised Sentiment Classification with a Ensemble Strategy[J]. Journal of Chinese Information Processing, 2013, 27(3): 120-126.
[13]张莉. 跨领域中文评论的情感分类研究[J]. 计算机应用研究, 2013, 30(3): 736-741.
Zhang L. Research on Sentiment Analysis of Cross-domain Chinese Comments[J]. Application Research of Computers, 2013, 30(3): 736-741.
[14]周志华. 机器学习[M]. 北京: 清华大学出版社, 2016:171-191.
[15]Colas F, Brazdil P. Comparison of SVM and Some Older Classification Algorithms in Text Classification Tasks[C]//IFIP. International Federation for Information Processing. Boston, USA, 2006: 169-178.
[16]赵彦涛,单泽宇,龙海峰, 等. 时延系统中T-LSSVR动态软测量建模方法研究[J]. 计量学报, 2019, 40(1): 146-152.
Zhao Y T, Shan Z Y, Long H F, et al. Dynamic Soft Measurement Modeling Method of T-LSSVR in Systems with Time Delay[J]. Acta Metrologica Sinica, 2019, 40(1): 146-152.
[17]张启忠,席旭刚,罗志增.基于多源生物信号的下肢步态相识别[J]. 计量学报,2018, 39(6): 895-901.
Zhang Q Z, Xi X G, Luo Z Z. Gait phase recognition based on multi-source biological signals[J]. Acta Metrologica Sinica, 2018, 39(6): 895-901.
[18]Storn R, Price K. Differential Evolution —A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[19]Xie X F, Zhang W J, Zhang G R, et al. Empirical study of differential evolution[J]. Control & Decision, 2004, 19(1): 49-48.
[20]Onan A, Korukogˇlu S, Bulut H. A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification[M]. Oxford, UK: Pergamon Press Inc., 2016.