Abstract:A novel approach was proposed for calibration of accelerometers by model-based parameter identification, aimed for the problem that mostly used method for accelerometers calibration cant satisfy requirements for dynamic mechanical quantity in reality. The model consisted of a linear, second-order differential equation with unknown coefficients. It was proposed to estimate these model parameters from primary vibration calibration, and an estimation procedure based on linear least-squares was presented. The uncertainties associated with the estimated results were determined utilizing a Monte Carlo simulation technique. The model obtained was used to predict the accelerometers behavior for shock acceleration, measured and predicted results were consistent with difference below 1%, which confirmed the validity of the method.
[1]于梅. 0. 1Hz~50kHz直线振动幅值和相位国家计量基准系统的研究[J]. 振动与冲击, 2007, 26(7): 54-58.
Yu M. Recent development of study on primary standards for measuring magnitude and phase of translational vibration in frequency domain[J]. Journal of vibration and shock, 2007, 26(7): 54-58.
[2]胡红波, 杨丽峰,于梅. 零差干涉仪用于振动校准中关键技术的研究[J]. 计量学报, 2018, 39(3): 368-372.
Hu H B, Yang L F, Yu M. Study on Key Technologies of Vibration Calibration Using Homodyne Interferometer[J]. Acta Metrologica Sinica, 2018, 39(3): 368-372.
[3]胡红波, 于梅. 激光干涉发冲击绝对校准的研究[J]. 计量学报, 2015, 36(4): 397-402.
Hu H B, Yu M. Investigation of shock calibration using laser interderometry[J]. Acta Metrologica Sinica, 2015, 36(4): 397-402.
[4]BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement[S]. 1995.
[5]Hessling J P. A novel method of dynamic correction in the time domain[J]. Measurement Science and Technology, 2008, 19(7): 075101.
[6]黄俊钦. 测试系统动力学[M]. 北京: 国防工业出版社, 1996.
[7]徐科军. 传感器动态特性的实用研究方法[M]. 合肥: 中国科学技术大学出版社, 1999.
[8]Link A, Tubner A, Wabinski W, et al. Calibration of accelerometers: determination of amplitude and phase response upon shock excitation[J]. Measurement Sci Techol, 2006, 17, 1888-1894.
[9]胡红波, 孙桥. 基于绝对法冲击校准的加速度计参数辨识的研究[J]. 测试技术学报, 2013, 27(1): 19-25.
Hu H B, Sun Q. Parameter identification of accelerometer based on primary shock calibration method[l]. Journal of test and measurement technology, 2013, 27(1): 19-25.
[10]Thomas Bruns, Afred Link, Franko Schmahling, et al. Calibration of accelerometers using parameter identification –Targeting a versatile new standard[C]// XIX IMERO World Congress, Fundamental and Applied Metrology. Lisbon, Portugal, 2009.
[11]樊尚春, 传感器技术及应用[M]. 北京: 北京航空航天大学出版社, 2004.
[12]胡红波, 孙桥. 二阶线性时不变测量系统动态特性的补偿与动态不确定度评估[J]. 计量学报, 2013, 34(2): 106-110.
Hu H B, Sun Q. Compensation of Dynamic Characteristics and Evaluation of Dynamic Uncertainty for a Measurement System Modeled by a Second-order Linear Time Invariant Model[J]. Acta Metrologica Sinica, 2013, 34(2): 106-110.
[13]Volkers H, Bruns T. A 2DOF Model for Back to Back Shock transducer[C]// XXI IMEKO World Congress, Prague, Czech, 2015.
[14]Bruns T, Ripper G P, Tubner A. Final report on CIPM key comparison CAUV. V-K2[J]. Metrologia, 2014, 51:09002.
[15]胡广书. 数字信号处理 理论、算法与实现[M]. 2版. 北京: 清华大学出版社, 2003.