Abstract:In order to solve the problems of low efficiency and long diagnosis time of traditional vibration signal feature extraction, a rolling bearing fault diagnosis method based on empirical mode decomposition and principal component analysis were proposed. Firstly, the empirical mode decomposition was used to decompose the vibration signal into a finite number of intrinsic mode functions and a residual function to extract the energy of the main intrinsic mode functions and their local average frequency characteristics. Finally, the composite feature vector was used as the input of principal component analysis classifier to complete the fault identification. The experimental results showed that the composite eigenvector can effectively reflect the running state of the bearing. Compared with BP neural network, support vector machine and K-nearest neighbor algorithm, principal component analysis classification not only can accurately identify faults, but also has the advantages of short training time and convenient use.
汪朝海,蔡晋辉,曾九孙. 基于经验模态分解和主成分分析的滚动轴承故障诊断研究[J]. 计量学报, 2019, 40(6): 1077-1082.
WANG Chao-hai,CAI Jin-hui,ZENG Jiu-sun. Research on Fault Diagnosis of Rolling Bearing Based on Empirical Mode Decomposition and Principal Component Analysis. Acta Metrologica Sinica, 2019, 40(6): 1077-1082.
[1]陈夔蛟. 基于振动信号的滚动轴承故障诊断研究[D]. 西安:西安电子科技大学, 2011.
[2]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].
Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[3]常竞, 温翔. 基于改进EMD的滚动轴承故障增长特征提取和损伤评估技术[J]. 计算机应用研究, 2019, 36(5): 1-3.
Chang J, Wen X. Rolling Bearing Fault Growth Feature Extraction and Damage Assessment Technology Based on Improved EMD[J]. Application Research of Computers, 2019, 36(5): 1-3.
[4]Yadav S, Kalra P K. Fault Diagnosis of Internal Combustion Engine using Empirical Mode Decomposition[C]// Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis, Salzburg, Austria, 2009: 40-46.
[5]张超, 陈建军, 郭迅. 基于EEMD能量熵和支持向量机的齿轮故障诊断方法[J]. 中南大学学报(自然科学版), 2012, 43(3): 932-939.
Zhang C, Chen J J, Guo X. Gear Fault Diagnosis Method Based on EEMD Energy Entropy and Support Vector Machine[J]. Journal of Central South University(Natural Science Edition), 2012, 43(3): 932-939.
[6]郑慧峰, 喻桑桑, 王月兵, 等. 基于经验模态分解和奇异值分解的振动声调制信号分析方法研究[J]. 计量学报, 2016, 37(4): 398-401.
Zheng H F, Yu S S, Wang Y B, et al. Research on Vibration and Sound Modulation Signal Analysis Based on Empirical Mode Decomposition and Singular Value Decomposition[J]. Acta Metrologica Sinica, 2016, 37(4): 398-401.
[7]罗来兴. BP神经网络在船舶动力系统故障诊断中的应用[J]. 舰船科学技术, 2018, 40(10): 106-108.
Luo L X. Application of BP Neural Network in Fault Diagnosis of Ship Power System[J]. Ship Science and Technology, 2018, 40(10): 106-108.
[8]程淑红, 高许, 周斌. 基于多特征提取和SVM参数优化的车型识别[J]. 计量学报, 2018, 39(3): 348-352.
Chen S H, Gao X, Zhou B. Vehicle identification based on multi-feature extraction and SVM parameter optimization [J]. Acta Metrologica Sinica, 2018, 39(3): 348-352.
[9]Akhand R, Upadhyay S H. An integrated approach to bearing prognostics based on EEMD-multi feature extraction, Gaussian mixture models and Jensen-Rényi divergence[J]. Applied Soft Computing, 2018, 71: 36-50.
[10]王前, 于嘉成, 宁永杰. 基于MFCC与PCA的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2017,(12): 103-105.
Wang Q, Yu J C, Ning Y J. Rolling Bearing Fault Diagnosis Based on MFCC and PCA [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2017,(12): 103-105.
[11]辛宪会. 支持向量机理论、算法与实现[D]. 郑州: 中国人民解放军信息工程大学, 2005.
[12]张淑清, 任爽, 陈荣飞, 等. 基于大数据简约及PCA改进RBF网络的短期电力负荷预测[J]. 计量学报, 2018, 39(3): 392-396.
Zhang S Q, Ren S, Chen R F, et al. Short-term power load forecasting based on big data reduction and PCA improved RBF network [J]. Acta Metrologica Sinica, 2018, 39(3): 392-396.
[13]Wei L, Minjun P, Qingzhong W. Fault identification in PCA method during sensor condition monitoring in a nuclear power plant[J]. Annals of Nuclear Energy, 2018, 121: 135-145.
[14]何群, 王红, 江国乾, 等. 基于相关主成分分析和极限学习机的风电机组主轴承状态监测研究[J]. 计量学报, 2018, 39(1): 89-93.
He Q, Wang H, Jiang G Q, et al. Research on monitoring the state of main bearings of wind turbines based on relevant principal component analysis and extreme learning machines[J]. Acta Metrologica Sinica, 2018, 39(1): 89-93.
[15]Jing C, Hou J. SVM and PCA based fault classification approaches for complicated industrial process [J]. Neurocomputing, 2015, 167: 636-642.