Abstract:For the traditional ECT sensors electrode-to-gap ratio (EGR) is fixed and can not be adjusted, the distance between the measuring plate and the center of the pipe cannot be changed, the measured objects position and size in the pipe can not select the appropriate electrode-to-gap ratio, and it can not get better reconstructed image. A novel sensor system with adjustable electrode-to-gap ratio is proposed. The electrode-to-gap ratio can be adjusted from 101 to 61. In order to solve the problem that this sensor system can not join the radial substrate and cause the interference of the coupling capacitances between adjacent plates, A system for adding a differential electrode between the measuring plate and the shield was designed, and the differential electrode was adjusted synchronously with the measuring electrode.. The experimental results showed that the selected electrode-to-gap ratio (EGR) would be different along with the difference of the position and the size of the measured object. This sensor system can quickly adjust the appropriate duty cycle to obtain the best imaging effect, the image error (IME) decreased to 0.25 and the correlation coefficient increased (CORR) to 0.80.
[1]马敏, 王伯波, 薛倩. 基于数据融合的ECT图像重建算法[J]. 仪器仪表学报, 2015, 36(12): 2798-2803.
Ma M, Wang B B, Xue Q. ECT image reconstruction algorithm based on data fusion [J]. Chinese Journal of Scientific Instrument, 2015, 36(12): 2798-2803.
[2]范优飞, 胡红利, 杨帆, 等. 一种48电极可配置电容层析成像系统模型[J].西安交通大学学报, 2015, 49(04): 110-115.
Fan Y F, Hu H L, Yang F, et al. A 48-electrode configurable capacitance tomography system model [J]. Journal of Xian Jiaotong University, 2015, 49(4): 110-115.
[3]马敏, 王伯波, 闫超奇, 等. 基于旋转电极的电容层析成像技术图像融合算法[J]. 计量学报, 2018, 39(1): 43-46.
Ma M, Wang B B, Yan C Q, et al. Image Fusion Algorithm of Electrical Capacitance Tomography Based on Rotating Electrode [J]. Acta Metrologica Sinica, 2018, 39(1): 43-46.
[4]高彦丽, 章勇高, 邵富群, 等. 电容层析成像技术中图像重建算法的发展及研究[J]. 传感器与微系统, 2007, 26(10): 9-11.
Gao Y L, Zhang Y G, Shao F Q, et al. Development and Research of Image Reconstruction Algorithm in Electrical Capacitance Tomography [J]. Sensors and Microsystems, 2007,26 (10): 9-11.
[5]孔银. 电容层析成像技术图像重建算法的研究[D]. 哈尔滨:哈尔滨理工大学, 2017.
[6]刘诗哲. 隔离电极与极板的旋转对三维ECT传感器性能的影响[D]. 沈阳:沈阳工业大学, 2016.
[7]马平, 司志宁. 基于小波变换的CT/ECT图像融合方法[J]. 计量学报, 2018, 39(4): 536-540.
Ma P, Si Z N. CT/ECT image fusion method based on wavelet transform [J]. Acta Metrologica Sinica, 2018, 39(4): 536-540.
[8]张立峰, 宋亚杰. 基于梯度投影稀疏重建算法的电容层析成像图像重建[J]. 计量学报, 2019, 40(4): 631-635.
Zhang L F, Song Y J. Image Reconstruction for Electrical Capacitance Tomography Based on Barzilai-Borwein Gradient Projection for Sparse Reconstruction Algorithm[J]. Acta Metrologica Sinica, 2019, 40(4): 631-635.
[9]张玉燕,孙东涛,张振达, 等. 同面阵列电容成像传感空/满场设定方法研究[J]. 计量学报, 2018, 39(4):541-545.
Zhang Y Y, Sun D T, Zhang Z D, et al. Method of Setting Empty/Full Field for Coplanar Capacitance Array Imaging Sensor[J]. Acta Metrologica Sinica, 2018, 39(4):541-545.
[10]王伯波. 滑油在线监测的ECT传感器优化及算法研究[D]. 天津: 中国民航大学, 2017.
[11]Cui Z Q, Wang H X, Yin W L. Electrical Capacitance Tomography With Differential Sensor [J]. IEEE Sensors Journal, 2015, 15(9): 5087-5094.