1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China
3. The Key Laboratory for the Electrical Quantum Standard of State Administration for Market Regulation, Beijing 100029, China
Abstract:A filament-surface capacitive sensor based on self-damping vertical reference to measure the residual horizontal displacement precisely during the vertical movement is presented. The filament electrode works as a direct vertical reference, which avoids the system error caused by indirect-reference conversion. And the liquid damper in the end of the filament electrode ensures the stability of the capacitive sensor. Experiments show that in the range of 0.38~0.4pF, the resolution of the filament-surface capacitive sensor is better than 0.05μm, and the short-term stability is approximately 0.1μm.
[1]Li Z K, Zhang Z H, Lu Y F, et al. The Design and construction of the joule balance NIM-2[J]. IEEE Transactions on Instrumentation & Measurement, 2017, 66(6): 1329-1336.
[2]Li Z K, Zhang Z H, Lu Y F, et al. The first determination of the Planck constant with the joule balance NIM-2[J]. Metrologia, 2017,54(5): 763-774.
[3]Zhang Z H, He Q, Li Z K. The joule balance in NIM of China[J]. Metrologia, 2014,51: S25-S31.
[4]张钟华, 李辰, 贺青, 等. 能量天平研究进展[J]. 计量学报, 2014,35(4):305-310.
Zhang Z H, Li C, He Q, et al.The Progress of Joule Balance[J]. Acta Metrologica Sinica,2014,35(4):305-310.
[5]曾涛, 鲁云峰, 李正坤, 等. 能量天平水平安培力与电磁转矩引起对准能量误差的评估[J]. 计量学报. 2018, 39(6):753-758.
Zeng T,Lu Y F,Li Z K, et al.Joule Balance Alignment Energy Error Evaluation by Horizontal Ampere Force and Electromagnetic Torque [J]. Acta Metrologica Sinica,2018, 39(6):753-758.
[6]Eichenberger A L, Butty J, Jeanneret B, et al. A new magnet design for the METAS watt balance[C]//Digest 2004 Conf on Precision Electromagnetic Measurements. Rio de Janeiro, Brazil, 2004:56-57.
[7]Gilbert O, Bielsa F, Juncar P, et al. Optical align-ment tool for the LNE and METAS watt balance projects[C]//Digest 2010 Conf on Precision Electromagnetic Measurements. Daejeon, Korea, 2010: 518-519.
[8]Baxter L K, Capacitive sensor basics in Capacitive Sensors[M]. New York: IEEE Press, 1997: 1-46.
[9]Steiner A. Technique for blade tip clearance measur-ements with capacitive probes[J]. Measurement Science & Technology, 2000,11(7): 865-869.
[10]Seppa J, Korpelainen V, Merima M. A method for linearization of a laser interferometer down to the picometre level with a capacitive sensor[J]. Meas-urement Science & Technology, 2011, 22(9): 1-7.
[11]Tran T, Oliver D R, Thomson D J, et al. “Zeptof-arad”(10-21 F) resolution capacitance sensor for sca-nning capacitance microscopy[J]. Review of Scientific Instrumen-ts, 2001, 72(6): 2618-2623.
[12]Carminati M, Ferrari G, Guagliardo F, et al. Zepto Farad capacitance detection with a miniaturized CMOS current front-end for nanoscale sensors[J]. Sensors & Actuators A Physical, 2011, 172(1): 117-123.
[13]Matko V, Milanovic M. Temperature-compensated cap-acitance-frequency converter with high resolution[J]. Sensors & Actuators A Physical, 2014, 220: 262-269.
[14]Matko V. Next generation AT-cut quartz crystal sensing devices[J]. Sensors, 2011, 11(5): 4474-4482.
[15]Wei J, Yue C, Velden M V, et al. Design, fabrication and characterization of a femto-farad capacitive sensor for pico-liter liquid monitoring [J]. Sensors & Actuators A Physical, 2010, 1(1): 120-123.
[16]Andeen-Hagerling, Inc. AH 2700A, 50 Hz-20 kHz Ultra-precision Capacitance Loss Bridge[Z]. Cleveland, Ohio, 2010.
[17]戴葆青. 材料力学[M]. 北京:北京航空航天大学出版社,2010.
[18]包亦望. 脆性材料弯曲强度尺寸效应及抗拉强度[J]. 武汉工业大学学报,1990, 12(3): 25-29.
Bao Y W. Size Effect of Bending Strength and Tensile Strength of Brittle Materials[J]. Journal of Wuhan University of Technology, 1990, (3): 25-29.