1. Information Department, Beijing University of Technology, Beijing 100124, China
2. Beijing Scientific Research Institute of Metrology and Testing, Beijing 100029, China
Abstract:The algorithm for detecting whether an equipment terminal with satellite positioning is within the set range or not deserves attention, which is the decisive factor in the design of an electronic fence. An algorithm for entry fence detection based on support vector machine using classification method was proposed. The algorithm mainly consists of three parts: selecting an appropriate kernel function according to the location data of the satellite positioning terminal; calculating the values of kernel function and error penalty parameters through grid searching technique; adjusting threshold value until the detection accuracy is highest. The validity of the algorithm was demonstrated using experimental data from satellite positioning terminals. The detection accuracy rate is estimated to be 80%~96%, which is much higher than the accuracy of 43%~67% obtained by direct detection. The result embodied high practical value for the society.
[1]Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects.[J]. Science, 2015, 349(6245): 255-260.
[2]何清, 李宁, 罗文娟,等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4): 327-336.
He Q, Ling N, Luo W J, et al. Survey of machine learning algorithms under big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327-336.
[3]Li X, Ge M, Dai X, et al. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo[J]. Journal of Geodesy, 2015, 89(6):607-635.
[4]周健, 毛刚, 赵李健,等. BD2/GPS四频高精度接收机在远望号船姿测量中的应用[J]. 测绘科学技术学报, 2012, 29(3): 171-174.
Zhou J, Mao G, Zhao L J, et al. Application of BD2/GPS four frequency high precision receiver in ship attitude measurement of Yuan Wang[J]. Journal of Surveying and Mapping Science and Technology, 2012, 29(3): 171-174.
[5]张继海, 广伟, 袁海波, 等. 北斗测距信号评估与精密单点定位应用研究[J]. 仪器仪表学报, 2017, 38(11): 2707-2714.
Zhang J H, Guang W, Yuan H B, et al.Study on range signal evaluation and precise point positioning application of Beidou navigation satellite system (BDS)[J]. Chinese Journal of Scientific Instrument, 2017, 38 (11): 2707-2714.
[6]王昱洁, 王媛, 张勇. 基于KFCM-LMC-LSSVM算法的WLAN室内定位方法[J]. 计量学报, 2018, 39(4): 554-558.
Wang Y J, Wang Y, Zhang Y. Indoor Positioning Algorithm for WLAN Based on KFCM-LMC-LSSVM[J].Acta Metrologica Sinica, 2018, 39(4): 554-558.
[7]姚英彪, 毛伟勇, 姚瑞丽, 等. 基于改进支持向量回归的室内定位算法[J]. 仪器仪表学报, 2017, 38(9): 2112-2119.
Yao Y B, Mao W Y, Yao R L, et al. Indoor positioning algorithm based on improved support vector regression[J]. Chinese Journal of Scientific Instrument, 2017, 38(9):2112-2119.
[8]吴哲君, 赵忠华, 唐雷. 基于SVM的行人步态实时分类方法[J]. 电子测量技术, 2015, 38(7): 41-44.
Wu Z J, Zhao Z H, Tang L. SVM based method for real time classification of pedestrian gait[J]. Electronic Measurement Technology, 2015, 38(7): 41-44.
[9]程淑红,高许,周斌. 基于多特征提取和SVM参数优化的车型识别[J]. 计量学报, 2018, 39(3): 348-352.
Cheng S H, Gao X, Zhou B. Vehicle Recognition Based on Multi-feature Extraction
and SVM Parameter Optimization[J].Acta Metrologica Sinica, 2018, 39(3): 348-352.
[10]Han S J,Cao Q B,Han M. Parameter selection in SVM with RBF kernel function[C]// World Automation Congress 2012,IEEE, 2012:1-4.
[11]陈超波, 杨楠. RBF神经网络算法在动态称重中的应用[J]. 电子测量技术, 2016, 39(5): 187-190.
Chen C B, Yang N. Application of RBF neural network algorithm in dynamic weighing[J]. Electronic Measurement Technology, 2016, 39(5):187-190.
[12]孙国强, 樊新海, 石文雷. 基于MFCC和支持向量机的装甲车辆识别研究[J]. 国外电子测量技术, 2017, 36(10): 31-35.
Sun G Q, Fan X H, Shi W L. Research on armored vehicle classification based on MFCC and SVM[J]. Foreign Electronic Measurement Technology, 2017, 36(10): 31-35.
[13]方雷, 张华鑫, 姚申君. 一种基于面积修改简单多边形的算法[J]. 华东师范大学学报, 2011, (2): 77-88.
Fang L, Zhang H X, Yao S J. An algorithm based on area modification of simple polygon [J]. Journal of East China Normal University, 2011, (2): 77-88.