Abstract:A plantar force measurement system was designed based on the pressure sensor. Selecting the layout of the pressure sensor, designing the signal conditioning circuit to amplify and filter the collected pressure signal, the hardware platform was build and the signal acquisition interface was designed; The sensor calibration experiment and the foot force measurement system experiment were performed to collect the pressure signal when the object was walking at different speed at different statement; Taking the proportional calculation, determining fuzzy sets, designing membership functions, the fuzzy processing was carried out and the fuzzy rules was established by Larsen product Hint method, finally, the gait phase was inferred from the fuzzy output signal.
[1]Dobra A. Comparative analysis of ZMP for biped robot and human planter pressure[J]. Advanced Materials Research, 2012, 463-464:1210-1214.
[2]李炜, 邱宏, 徐江, 等. 基于LABVIEW的足底压力测量系统研究[J]. 中国医疗器械杂志, 2011, 35(1):19-23.
Li W, Qiu H, Xu J, et al. The Research in a Foot Pressure Measuring System Based on LabVIEW[J]. Chinese Journal of Medical Instrumentation, 2011, 35(1):19-23.
[3]Stebbins J, Way L, Giacomozzi C. Measurement of plantar pressure data in children with clubfoot[J]. Journal of Foot and Ankle Research, 2014, 7(1):A79.
[4]Bamberg S J M, Benbasat A Y, Scarborough D M, et al. Gait analysis using a shoe-integrated wireless sensor system[J]. IEEE Transactions on Information Technology in Biomedicine, 2008,12(4):413-423.
[5]张启忠,席旭刚,罗志增. 基于多源生物信号的下肢步态相识别[J]. 计量学报, 2018, 39(6):1895-901.
Zhang Q Z, Xi X G, Luo Z Z. Gait Phase Recognition Based on Multi-source Biological Signals[J]. Acta Metrologica Sinice, 2018, 39(6):1895-901.
[6]陈大跃, 丁洪, 周新宇, 等. 人体行走的步态测试与分析系统[J]. 中国生物医学工程学报, 1997, 16(2):133-141.
Chen D Y, Ding H, Zhou X Y, et al. A System of Measuring and Analyzing Gait of Human Walking[J]. Chinese Journal of Biomedical Enginerring, 1997, 16(2):133-141.
[7]宋鹏, 莫新民, 邓亚萍, 等. 基于比例归一化阈值的外骨骼步态识别算法[J]. 火炮发射与控制学报, 2018, 19(2):81-85.
Song P, Mo X M, Deng Y P, et al. Exoskeleton Gait Recognition Method Based on the Proportional Normalized Threshold[J]. Journal of Gun Launch & Control, 2018, 19(2):81-85.
[8]杨金江. 助力型下肢外骨骼机器人多信号融合感知系统[D]. 杭州:浙江大学,2017.
[9]杨鹏, 柏健, 王欣然, 等. 基于有限状态机控制的智能假肢踝关节[J]. 中国组织工程研究, 2013, 17(9):1549-1554.
Yang P, Bai J, Wang X R, et al. Intelligent Prosthetic Ankle Based on the Finite State Machine Control[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(9):1549-1554.
[10]胡丽娜. 基于人体感知信息的踝足助行外骨骼的设计与控制研究[D]. 杭州:浙江大学, 2018
[11]Dhindsa I S, Agarwal R, Ryait H S. A novel algorithm to predict knee angle from EMG signals for controlling a lower limb exoskeleton[C]//CEUR Workshop Proceedings, 2016,1638:536-541.
[12]Khan M T I, Kurita T. EMG Signals for Co-Activations of Major Lower Limb Muscles in Knee Joint Dynamics[J]. Biomedical Science and Engineering, 2015,3(1):9-14.
[13]贾山, 路新亮, 韩亚丽, 等. 在摆动相中用于下肢外骨骼跟踪人体踝关节轨迹的方法[J]. 东南大学学报(自然科学版), 2014, 44(1):87-92.
Jia S, Lu X L, Han Y L, et al. Method for lower extremity exoskeleton′s ankle joint trajectory to track human′s in swing phase[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(1):87-92.
[14]任阳, 吴宝元, 申飞, 等. 复杂环境下仿人机器人有效支撑区域的感知[J]. 自动化与仪表, 2010, 25(10):1-4.
Ren Y, Wu B Y, Shen F, et al. Perception of Effective Ground-supporting Area of Humanoid Robot in Complex Environment[J]. Automation & Instrumentation, 2010, 25(10):1-4.
[15]姜春华, 张溪原, 崔伟, 等. 基于PVDF与ARM CM3内核的足底动态压力测试系统[J]. 压电与声光, 2013, 35(2):279-286.
Jiang C H, Zhang X Y, Cui W, et al. The Plantar Pressure Dynamic Measurement System Base on the PVDF Sensor and ARM Cortex-M3 Microcontroller[J]. Piezoelectrics & Acoustooptics, 2013, 35(2):279-286.
[16]张行. 穿戴式步态矫形器感知系统研究[D]. 武汉:武汉理工大学, 2014.
[17]张烨,周晓晶,杨晓童. 基于单目视频的人体运动测量系统[J]. 计量学报, 2019, 40(3):367-372.
Zhang Y, Zhou X J, Yang X T. Human Motion Measurement System Based on Monocular Videos[J]. Acta Metrologica Sinice, 2019, 40(3):367-372.
[18]陈召全,朱明星,等. 基于模糊控制的小波包多阈值语音减噪新算法[J]. 计量学报, 2019, 40(1):134-139.
Chen Z Q, Zhu M X, et al. A New Algorithm of Wavelet Packet Multi Threshold Speech Denoising Based on Fuzzy Control[J]. Acta Metrologica Sinice, 2019, 40(1):134-139.