1. National Institute of Metrology, Beijing 100029, China
2. Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, Shanghai 200083, China
3. College of Applied Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
Abstract:A calibration method of the on-orbit temperature sensor based on the gallium - based alloy miniature fixed point is proposed. The developed process of the Gallium - based alloy miniature fixed points for on-orbit calibration and the quasi-adiabatic vacuum measurement system are introduced. Combined with cavity blackbody and non-proximal mounted temperature sensor, the repeatability of Ga-Sn and Ga-Zn alloy fixed points is measured,which was better than 2mK during melting process. For Ga, the long-term stability is 2.1mK. The temperature sensor at the bottom of cavity blackbody was indexed by the continuous melting plateau value measured by temperature sensor during gallium and two gallium-based alloy fixed points melting process in a specific thermal environment. The difference between the calibration result and the routine calibration method in the laboratory is less than 2mK. The results are also shown as the phase transformation time increases, the phase transition temperature is closer to the melting temperature of the phase change material, ie, the smaller the temperature difference between the fixed point and the temperature sensor hole, in the thermal environment conditions remaining unchanged. Meanwhile, for Ga-Sn and Ga-Zn, there is a linear relationship between the phase transition melting temperature and the single-point calibration temperature at zero power is 20.352°C and 25.187°C.
[1]郭强, 陈博洋, 张勇, 等. 风云二号卫星在轨辐射定标技术进展[J]. 气象科技进展, 2013, (6): 6-12.
Guo Q, Chen B, Zhang Y, et al. Progress in On-orbit Radiometric Calibration Technology for Fengyun-2 Satellite [J]. Advances in Meteorological Science and Technology, 2013, (6): 6-12.
[2]龚律宇, 郝小鹏, 孙建平,等. H500型红外遥感定标高精度真空黑体辐射源的研制[J]. 计量学报, 2017, 38(2):129-134.
Gong L Y, Hao X P, Sun J P, et al. Research of H500 Type High Precision Vacuum Blackbody as Calibration Standard for Infrared Remote Sensing[J]. Acta Metrologica Sinica, 2017, 38(2):129-134.
[3]胡朝云, 郝小鹏, 宋健, 等. 红外高光谱大气探测仪星载固定点黑体辐射源的研制[J]. 计量学报, 2019, 40(2):232-239.
Hu C Y, Hao X P, Song J, et al.Development of Blackbody Radiation Sources at Fixed Point on Satellite of Infrared Hyperspectral Atmospheric Detector[J]. Acta Metrologica Sinica, 2019, 40(2):232-239.
[4]Best F A, Adler D P, Ellington S D, et al. On-orbit absolute calibration of temperature with application to the CLARREO mission[J]. Proc SPIE, 2008, 7081: 1-10.
[5]Best F A, Revercomb H E. On-orbit absolute temperature calibration using multiple phase change materials: overview of recent technology advancements[J]. Proc SPIE, 2010, 7857: 253-257.
[6]Best F A, Adler D P, Pettersen C, et al. On-orbit absolute radiance standard for the next generation of IR remote sensing instruments[J]. Proc SPIE, 2012, 8527: 85270N.
[7]Best F A, Adler D P, Pettersen C, et al. Results from recent vacuum testing of an on-orbit absolute radiance standard (OARS) intended for the next generation of infrared remote sensing instruments[J]. Proc SPIE, 2014, 9263: 14-10.
[8]Burdakin A, Khlevnoy B, Samoylov M, et al. Melting points of gallium and of binary eutectics with gallium realized in small cells[J]. Metrologia, 2008, 45(1): 75-82.
[9]Burdakin A, Khlevnoy B, Samoylov M, et al. Development of Gallium and Gallium-Based Small-Size Eutectic Melting Fixed Points for Calibration Procedures on Autonomous Platforms[J]. International Journal of Thermophysics, 2009, 30(1): 20-35.
[10]Hao X P, Sun J P, Xu C Y, et al.Miniature Fixed Points as Temperature Standards for In Situ Calibration of Temperature Sensors[J]. International Journal of Thermophysics, 2017, 38(6): 90.
[11]徐春媛, 夏蔡娟, 郝小鹏, 等. 准绝热法微型镓固定点相变特性研究[J]. 计量学报, 2017, 38(1): 19-22.
Xu C Y, Xia C J, Hao X P, et al. Research on Phase Change Characteristic of Miniature Gallium Fixed-point Using Quasi-adiabatic Measurement Method[J]. Acta Metrologica Sinica, 2017, 38(1): 19-22.
[12]孙建平, 曾凡超, 张琳, 等. 微型镓基共晶点现场精密铂电阻温度计校准研究[J]. 计量学报, 2015, 36(z1): 32-36.
Sun J P, Zeng F C, Zhang L, et al. Onsite Calibration of the Precision Industrial Platinum Resistance Thermometer Based on Gallium and Gallium-Based Small-size Eutectic Points [J]. Acta Metrologica Sinica, 2015, 36(z1): 32-36.
[13]曾凡超, 曾兵, 孙建平, 等. 基于微型Ga-Sn共晶点的精密铂电阻温度计现场标定[J]. 计量学报, 2015, 36(z1): 28-31.
Zeng F, Zeng B, Sun J P, et al. Precision Platinum Resistance Thermometer inthe Field Calibration Based on Miniature Ga-Sn Eutectic Point [J]. Acta Metrologica Sinica, 2015, 36(z1): 28-31.
[14]Sun J, Hao X, Zeng F, et al. Onsite Calibration of a Precision IPRT Based on Gallium and Gallium-Based Small-Size Eutectic Points[J]. International Journal of Thermophysics, 2017, 38(4): 47.
[15]赵品, 谢辅洲, 孙振国. 材料科学基础教程[M]. 哈尔滨:哈尔滨工业大学出版社, 2016: 66-68.
[16]Krapf G, Schalles M, Frhlich T. Estimation of fixed-point temperatures—A practical approach[J]. Measurement, 2011, 44(2): 385-390.
[17]Boguhn D , Augustin S, Bernhard F, et al. Application of Binary Alloys in Miniature Fixed-Point Cells as Secondary Fixed Points in the Temperature Range from 500℃ to 660℃[J]. Temperature: Science and Industry, 2003, 684(1): 249-254.
[18]李强, 金明江, 应仁龙, 等. 镓基合金凝固与熔化过程中的相变行为[J]. 金属功能材料, 2014, 21(5): 6-9.
Li Q, Jin M J, Ying R L, et al.The Phase Transformation Behaviors of Gallium-Based Alloy during the Process of Solidification and Melting [J]. Metal Functional Materials, 2014, 21(5): 6-9.
[19]Ancsin J. Al-Si eutectic: a study of its melting and freezing behaviour[J]. Metrologia, 2005, 43(1): 60-66.
[20]瞿咏梅. 标准铂电阻温度计在0~30℃范围内的不确定度评定[J]. 计量学报, 2001, 22(1): 40-45.
Guo Y M. Evaluation of the uncertainty of standard platinum resistance thermometer in the range of 0~30℃ [J]. Acta Metrologica Sinica, 2001, 22(1): 40-45.
[21]吴志祥, 周祥才, 黄亮, 等. 多项式直接拟合在铂电阻高精度测温中的研究[J]. 自动化与仪表, 2014, 29(2): 57-60.
Wu Z X, Chou X C, Huang L, et al. Study on the high precision temperature measurement of platinum resistance by direct fitting of polynomial [J]. Automation and Instrumentation, 2014, 29(2): 57-60.
[22]王颖文,张欣,孙建平, 等. -38.8344~156.5985℃温区温标偏差方程外推和内插研究[J]. 计量学报, 2018,39(6):816-821.
Wang Y W, Zhang X,Sun J P, et al.Research on Extrapolation and Interpolation of Temperature Scale Deviation Equation over the Temperature -38.8344~156.5985℃[J]. Acta Metrologica Sinica, 2018,39(6):816-821.