Abstract:A method based on bird swarm algorithm optimizing robust extreme learning machine is proposed to estimate the charge state of the battery. Robust extreme learning machine overcomes the shortcomings that extreme learning machine can not deal with the abnormal value, so the prediction accuracy of the network is improved. The parameters such as the number of hidden nodes and the adjustment factors of robust extreme learning machine are optimized by bird swarm algorithm, so the problems that the parameters such as the number of hidden nodes and the adjustment factors are difficult to be determined can be solved, which can further improve the convergence speed of the network and help to find the global optimal value. Several key parameters including current, voltage, temperature and internal resistance, which affect the SOC characteristics of the battery, are collected to model and test by ADVISOR software. Simulation results show that compared with other algorithms such as BPNN, RBFNN and FNN, BSA-RELM has a smaller error and higher prediction accuracy.
吴忠强,尚梦瑶,申丹丹,戚松岐,朱向东. 基于BSA-RELM的纯电动汽车锂离子电池SOC估计[J]. 计量学报, 2019, 40(4): 693-699.
WU Zhong-qiang,SHANG Meng-yao,SHEN Dan-dan,QI Song-qi,ZHU Xiang-dong. Estimation of SOC of Li-ion Battery in Pure Electric Vehicle by BSA-RELM. Acta Metrologica Sinica, 2019, 40(4): 693-699.
[1]Wu Z Q, Yu D Q. Application of improved bat algorithm for solar PV maximum power point tracking under partially shaded condition[J]. Applied Soft Computing, 2018, 62: 101-109.
[2]张任, 胥芳, 陈教料, 等. 基于PSO-RBF神经网络的锂离子电池健康状态预测[J]. 中国机械工程,2016, 27(21): 2975-2979.
Zhang R, Xu F, Chen J K, et al. Li-ion battery SOH prediction based on PSO-RBF neural network[J]. China Mechanical Engineering, 2016, 27(21): 2975-2979.
[3]赵天意, 彭喜元, 彭宇, 等. 改进卡尔曼滤波的融合型锂离子电池SOC估计方法[J]. 仪器仪表学报,2016, 37(7): 1441-1448.
Zhao T Y, Peng X Y, Peng Y, et al. Lithium-ion battery SOC estimation method with fusion improved Kalman filter algorithm[J]. China Journal of Scientific Instrument, 2016, 37(7): 1441-1448.
[4]陈则王,杨丽文,赵晓兵, 等. 基于改进无迹卡尔曼滤波的锂电池SOC在线估计[J]. 计量学报, 2019,39(1):40-49.
Chen Z W, Yang L W, Zhao X B, et al. Online Estimation of SOC for Li-ion Battery Based on An Improved
Unscented Kalman Filters Approach[J]. Acta Metrologica Sinica, 2019,39(1):40-49.
[5] Gregory L P. Kalman-filter SOC estimation for LIB cells[C]// EVAAP. Proceedings of the 19th International Electric Vehicle Symposium. Pusan, South Korea, 2002: 527-538.
[6]Charkhgard M, Farrokhi M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF[J]. IEEE Transaction on Industrial Electronics, 2010, 57(12): 4178-4187.
[7]Zhang Z L, Cheng X, Lu Z Y, SOC Estimation of Lithium-ion Battery With AEKF and Wavelet Transform Matrix[J]. IEEE Transaction on power electronics, 2017, 32(10): 7626-7634.
[8]尹安东, 张万兴, 赵韩, 等. 基于神经网络的磷酸铁锂电池SOC预测研究[J].电子测量与仪器学报,2011, 25(5): 433-437.
Yin A D, Zhang W X, Zhao H, et al. Research on estimation for SOC of LiFePO4 Li-ion battery based on neural network[J]. Journal of electronic measurement and instrument, 2011, 25(5): 433-437.
[9]陈智军, 韩超, 陈涛, 等. 基于人工神经网络的乐甫波液体密度粘度并行检测研究[J]. 计量学报,2017, 38(6): 721-724.
Chen Z J, Han C, Chen T, et al. Research on Parallel Measurement of Liquid Density and Viscosity Using Love Wave Based on Artificial Neural Networks[J]. Acta Metrologica Sinica, 2017, 38(6): 721-724.
[10]张淑清, 任爽, 陈荣飞, 等. 基于大数据简约及PCA改进RBF网络的短期电力负荷预测[J]. 计量学报,2018, 39(3): 392-396.
Zhang S Q, Ren S, Chen R F, et al. Short-term Power Load Forecast Based on Big Data Reduction and PCA-improved RBF Network[J]. Acta Metrologica Sinica, 2018, 39(3): 392-396.
[11]Hu X S, Li S B, Yang Y L. Advanced Machine Learning Approach for Lithium-ion Battery State Estimation in Electric Vehicles[J]. IEEE Transaction on Transportation Electrification, 2016, 2(2): 140-149.
[12]Chen J, Xu C F, Wu C S. Adaptive Fuzzy Logic Control of Fuel-Cell-Battery Hybrid Systems for Electric Vehicles[J]. IEEE transactions on industrial information, 2018, 14(1): 292-300.
[13]Hu X S, Sun F C. Fuzzy Clustering Based Multi-model Support Vector Regression State of Charge Estimator for Lithium-ion Battery of Electric[C]// IEEE. International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou, 2009: 392-396.
[14]丁知平, 刘超, 牛培峰, 等. IGSA-LSSVM软测量模型预测燃煤锅炉NOx排放量[J]. 计量学报,2018, 39(3): 414-419.
Ding Z P, Liu C, Niu P F, et al. GSA-LSSVM Soft Sensing Model for Predicting NOx Emission of Coal-fired Boiler[J]. Acta Metrologica Sinica, 2018, 39(3): 414-419.
[15]王琪, 孙玉坤, 倪福银, 等. 混合动力汽车电池内部状态预测的贝叶斯极限学习机方法[J]. 中国机械工程,2016, 27(22): 3118-3122.
Wang Q, Sun Y K, Ni F Y, et al. Prediction of Internal States of Battery in HEV by BELM[J]. China Mechanical Engineering, 2016, 27(22): 3118-3122.
[16]Huang G B, Zhu Q Y, Siew C. Extreme learning machine: Theory and application[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[17]彭显刚, 郑伟钦, 林利祥, 等. 考虑负荷自适应检测和修复的鲁棒极限学习机短期负荷预测方法[J]. 中国电机工程学报, 2016, 36(23): 6409-6417.
Peng X G, Zheng W Q, Lin L X,et al. Short-term Load Forecasting Method Based on Outlier Robust Extreme Learning Machine Considering Adaptive Load Detection and Repair[J]. Proceeding of the CSEE, 2016, 36(23): 6409-6417.
[18]Zhang K, Luo M X. Outlier-robust extreme learning machine for regression problems[J]. Neurocomputing, 2015, 151: 1519-1527.
[19]Bartlett P. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network[J]. IEEE Trans Inf Theory, 1998, 44(2): 525-536.
[20]Deng W Y, Zheng Q H, Chen L. Regularized extreme learning machine[C]//IEEE. IEEE Symposium on Computational Intelligence and Data Mining. Nashville, TN, USA, 2009: 389-395.
[21]Yang J F, Zhang Y. Alternating direction algorithms for -problems in compressive sensing[J]. SIAM J Sci Comput, 2011, 33(1) 250-278.
[22]Meng X B, Gao X Z., Lu L H. A new bio-inspired optimization algorithm: bird swarm algorithm[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2016, 28(4): 673-687.
[23]Wu Z Q, Yu D Q, Kang X H. Application of improved chicken swarm optimization for MPPT in photovoltaic system[J]. Optim Control Appl Meth, 2018, 39(2): 1-14.