Abstract:Berkovich nanoindentation experiments on a fused silica sample with different tilt angles were carried out. The indentation results show that the tilt of the sample affects the shape of the loading curves. The maximum indentation depth, residual depth and contact depth gradually decrease with the increase of the tilt angle of the specimen at the same indentation load, but the unloading curves are not affected, and they remain parallel to each other, the fitting parameter m of the unloading curves and the value of contact stiffness remain constant regardless of the inclination of the sample. In addition, it is found that the sample tilt will lead to smaller indentation projected contact area, which will make the hardness and elastic modulus larger.
[1]Zhang C Y, Zhu Y L, Chen Y B, et al. Understanding indentation-induced elastic modulus degradation of ductile metallic materials[J]. Materials Science & Engineering A, 2017, 696:445-452.
[2]Liu M, Yang F Q. Finite element simulation of the effect of electric boundary conditions on the spherical indentation of transversely isotropic piezoelectric films[J]. Smart Material Structures, 2012, 21(10):105020.
[3]Liu M, Yang F Q. Finite element analysis of the spherical indentation of transversely isotropic piezoelectric materials[J]. Modelling & Simulation in Materials Science & Engineering, 2012, 20(4):045019.
[4]Liu M, Yang F Q. Orientation effect on the Boussinesq indentation of a transversely isotropic piezoelectric material[J]. International Journal of Solids and Structures, 2013, 50(14-15):2542-2547.
[5]Yang F Q, Liu M. Analysis for the Indentation with a Flat Indenter on an Elastic-Perfectly Plastic Thin Film[J]. Journal of Computational & Theoretical Nanoscience, 2014, 11(1):265-271.
[6]Chen X, Ashcroft I, Wildman R D, et al. A combined inverse finite element – elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale[J]. International Journal of Solids & Structures, 2017, 104-105:25-34.
[7]Belhenini S, Labbaye T, Boulmer-Leborgne C, et al. Elastic modulus measurements of vertically aligned multi walled carbon nanotubes carpets by using the nanoindentation technique[J]. Mechanics Research Communications, 2017,85:16-20.
[8]C′oric′ D, Renjo M M, C′urkovic′ L. Vickers indentation fracture toughness of Y-TZP dental ceramics[J]. International Journal of Refractory Metals & Hard Materials, 2017, 64:14-19.
[9]史成利. 压头与试件间垂直度误差对纳米压痕/刻划测试影响的研究[D]. 长春: 吉林大学, 2014.
[10]Fischer-Cripps A C. Nanoindentation[M]. New York: Springer, 2004.
[11]邓墨杰, 高思田, 卢明臻, 等. 纳米力学测量系统的载荷与位移溯源校准方法研究[J]. 计量学报, 2012, 33(4): 289-293.
Deng M J, Gao S T, Lu M Z, et al. Study on Traceability and Calibration Method of the Load and Displacement of Nanomechanical Measurement System[J]. Acta Metrologica Sinica, 2012, 33(4): 289-293.
[12]周向阳, 蒋庄德, 王海容. 仪器柔度对压入法测试结果的误差影响与校准[J]. 计量学报, 2007, 28(4):339-343.
Zhou X Y , Jiang Z D, Wang H R. Errors Derived from Machine Compliance and Contribution to the Evaluated Values by Indentation Testing[J]. Acta Metrologica Sinica, 2007, 28(4):339-343.
[13]李晓兵, 陶兴付, 杨浩, 等. 较浅压入下针尖曲率半径对纳米压入硬度影响的比较研究[J]. 计量学报, 2017, 38(6): 713-716.
Li X B, Tao X F,Yang H, et al. Study on Different Curvature Radius Tips on the Nano Indentation Hardness at Super Low Depth[J].Acta Metrologica Sinica, 2017, 38(6): 713-716.
[14]王新伟, 陶兴付, 李旭, 等. 极浅压入下纳米压痕仪针尖面积函数校准方法的研究[J]. 计量学报, 2017, 38(5): 593-597.
Wang X W, Tao X F, Li X, et al. Study on the Calibration Method of the Tip Area Function of the Nanoindenter at Super Low Depth[J].Acta Metrologica Sinica, 2017, 38(5): 593-597.
[15]王新伟. 纳米压痕仪的校准及标物的研制[D]. 太原:太原理工大学, 2016.
[16]黎正伟. 纳米压痕仪的校准及不确定度评定[D]. 太原:太原理工大学, 2015.
[17]黎正伟, 陶兴付, 树学峰, 等. 纳米压痕仪的压头面积函数校准方法的比较研究[J]. 计量学报, 2015, 36(4): 403-407.
Li Z W, Tao X F, Shu X F, et al. Comparative Study on the Calibration Methods of the Indenter Area Function of the Instrumented Nanoindentation[J]. Acta Metrologica Sinica, 2015, 36(4): 403-407.
[18]沈林. 材料样品表面粗糙度对纳米压痕测试结果的影响研究[D]. 长春: 吉林大学, 2012.
[19]Saber-Samandari S, Gross K A. Effect of angled indentation on mechanical properties[J]. Journal of the European Ceramic Society, 2009, 29(12):2461-2467.
[20]郑远谋, 郑化权. 机械加工对金属材料硬度测试数据的影响[J]. 计量学报, 1993,14(1):62-66.
Zheng Y M, Zhang H Q. Cutting Process Affects the Testing Value of Metals Hardness[J].Acta Metrologica Sinica, 1993,14(1):62-66.
[21]Bobji M S, Biswas S K. Deconvolution of hardness from data obtained from nanoindentation of rough surfaces[J]. Journal of Materials Research, 1999, 14(6):2259-2268.
[22]Xu Z H, Li X. Effect of sample tilt on nanoindentation behaviour of materials[J]. Philosophical Magazine, 2007, 87(16):2299-2312.
[23]Kashani M S, Madhavan V. The Effect of Surface Tilt on Nanoindentation Results[C]// ASME 2007 International Mechanical Engineering Congress and Exposition, 2007.
[24]Kashani M S, Madhavan V. Analysis and correction of the effect of sample tilt on results of nanoindentation[J]. Acta Materialia, 2011, 59(3):883-895.
[25]Xin K, Lambropoulos J C. Deformation of fused silica: nanoindentation and densification[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1998, 3424:72-81.
[26]ISO 14577-1 Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameter [S]. 2002.
[27]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583.
[28]GAO C G, LIU M. Instrumented indentation of fused silica by Berkovich indenter[J]. Journal of Non-Crystalline Solids, 2017, 475:151-160.
[29]Jakes J E. Improved methods for nanoindentation Berkovich probe calibrations using fused silica[J]. Journal of Materials Science, 2018, 53(7):4814-4827.