Research of 100~400 K Vacuum Infrared Radiance Temperature Standard Blackbody Source
SHU Xin1,2,HAO Xiao-peng2,SONG Jian2,YUAN Zun-dong2,XUE Sheng-Hu1,HU Chao-yun2,3
1. College of Metrology & Measurement Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
2. National Institute of Metrology, Beijing 100029, China
3. College of Applied Nuclear Technology andAutomation Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
Abstract:The working principles, structure, performance-testing methods and the testing results of the vacuum infrared radiance temperature standard blackbody source is described. By applying liquid nitrogen cooling and 3-temperature-zones controlling, the temperature of this blackbody radiation source can be controlled at the range from 100K to 400K. The axial temperature uniformity, temperature stability of the cavity bottom of the blackbody within 100 ~ 400K are tested in a vacuum environment. Testing results are shown that the uniformity is better than 0.120K, and the stability of the temperature is controlled below 0.020K/20 min, respectively. In the atmospheric environment at room temperature, the emissivity of the blackbody is 0.9998 measured by the method based on controlling surroundings radiation. Based on the Monte Carlo blackbody emissivity simulation method, the influence of the temperature uniformity of the cavity emissivity is analyzed. The source of uncertainty of this blackbody radiation source is analyzed, and the combined standard uncertainty is less than 0.030K when the wavelength is between 8 μm to 16 μm.
[1]张燕, 李向阳. 航天红外遥感探测器发展现状[C]// 上海市红外与遥感学会第十九届学术年会. 上海,2014.
[2]龚律宇, 郝小鹏, 孙建平,等. H500型红外遥感定标高精度真空黑体辐射源的研制[J]. 计量学报, 2017, 38(2):129-134.
Gong L Y, Hao X P, Sun J P, et al. Research of H500 Type High Precision Vacuum Blackbody as Calibration Standard for Infrared Remote Sensing[J]. Acta Metrologica Sinica, 2017, 38(2):129-134.
[3]Monte C,Gutschwager B,Morozova S P,et al. Radiation Thermometry and Emissivity Measurements Under Vacuum at the PTB [J]. International Journal of Thermophysics, 2009,30(1):203-219.
[4]Morozova S P, Parfentiev N A, Lisiansky B E, et al. Vacuum Variable Medium Temperature Blackbody[J]. International Journal of Thermophysics, 2010, 31(8-9):1809-1820.
[5]Morozova S P, Parfentiev N A, Lisiansky B E, et al. Vacuum Variable-Temperature Blackbody VTBB100[J]. International Journal of Thermophysics, 2008, 29(1):341-351.
[6]Carter A C, Datla R U, Jung T M, et al. Low-background temperature calibration of infrared blackbodies[J]. Metrologia International Journal of Scientific Metrology,2006,43(2):46-50.
[7]Fowler J B,Johnson B C,Rice J P,et al. The new cryogenic vacuum chamber and black-body source for infrared calibrations at the NISTs FARCAL facility [J]. Metrologia,1998,35(4):323-327
[8]Mekhontsev S,Khromchenko V,Prokhorov A,et al. Establishing a New NIST Facility for the Primary Realization of both Spectral Radiance and Reflectance in the Mid-and Far-Infrared [C] // 2009 AGU Fall Meeting. San Francisco, USA,2009.
[9]Ivanov V S, Lisiansky B E, Morozova S P, et al. Medium-background radiometric facility for calibration of sources or sensors[J]. Metrologia,2000,37(5):599-602.
[10]郝小鹏, 宋健,孙建平,等. 风云卫星红外遥感亮度温度国家计量标准研究[J]. 光学精密工程, 2015, 23(7):1845-1851.
Hao X P, Song J, Sun J P, et al. Vacuum radiance temperature national standard facility for infrared remote sensors of Chinese Fengyun meteorological satellites[J].Optics and Precision Engineering, 2015, 23(7):1845-1851.
[11]许敏,郝小鹏,宋健,等.190~340K真空标准黑体辐射源研制[J] .计量学报,2015,36(z1):50-54.
Xu M, Hao X P, Song J, et al. Research of Vacuum Radiance Temperature Standard Blackbody Source from 190K to 340K[J]. Acta Metrologica Sinica, 2015,36(z1):50-54.
[12]赵亿坤, 王景辉, 原遵东,等. 低温标准黑体辐射源的性能研究[J]. 计量学报, 2017, 38(5):589-592.
Zhao Y K, Wang J H, Yuan Z D, et al. Study on the performance of the Low-temperature Blackbody Radiation Source. [J]. Acta Metrologica Sinica, 2017, 38(5):589-592.
[13]Adibekyan A, Kononogova E, Monte C, et al. High-Accuracy Emissivity Data on the Coatings Nextel 811-21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black[J]. International Journal of Thermophysics, 2017, 38(6):89.
[14]宋健,郝小鹏,原遵东,等.基于控制环境辐射的黑体辐射源发射率测量方法研究[J].中国激光,2015,42(9):269-275.
Song J, Hao X P, Yuan Z D, et al. Blackbody Source Emissivity Measurement Method Based on Controlling Surroundings Radiation[J]. China Journal of Lasers, 2015,42(9):269-275.
[15]宋健,郝小鹏,原遵东,等.基于控制环境辐射发射率测量方法的超黑涂层发射率特性研究[J].计量学报,2015,36(z1):24-27.
Song J, Hao X P, Yuan Z D, et al. Research on Ultra Black Paint Emissivity of the Emissivity Measure Method Based on Controlling Surroundings Radiation[J]. Acta Metrologica Sinica, 2015,36(z1):24-27.
[16]Saunders P, Fischer J, Sadli M, et al. Uncertainty Budgets for Calibration of Radiation Thermometers below the Silver Point[J]. International Journal of Thermophysics, 2008, 29(3):1066-1083.
[17]沈久利,邢婷婷,吴飞. 基于Monte-Carlo法的圆锥形黑体腔有效发射率的研究[J].计量学报,2018,39(3): 359-362.
Shen J Li, Xing T T,Wu F. Research on the Effective Emissivity of Conical Blackbody Cavity Based on Monte-Carlo Method[J]. Acta Metrologica Sinica, 2018,39(3): 359-362.
[18]原遵东, 陈桂生.发射率影响修正近似公式及其适用性分析[J]. 计量技术, 2013,(4):7-10.
Yuan Z D, Chen G S. Emissivity Approximation Correction Formula and Its Applicability Analysis[J]. Measurement Technique, 2013,(4): 7-10.