Abstract:In order to improve the accuracy of measurement uncertainty evaluation, the maximum entropy interval analysis method was proposed. Firstly, the model was established combining maximum entropy algorithm and Bayesian model.Secondly, asymmetry of lower and upper bounds for sample information of input quantity was analysised, and the Jaynes entropy and Lagrange were obtained the shortest interval.Lastly, the input information was divided the sample interval to determine the ratio of the measured uncertainty, considering the input uncertainty with probability distribution of the transfer process.The simulation results show that the algorithm has less range of measurement uncertainty and the result is more accurate.
[1]王傲胜.基于测量不确定度的平面度误差搜索范围研究[J].计量学报,2017,38(2):168-170.
Wang A S. Research on Search Area for Flatness Error Based on the Measurement Uncertainty[J]. Acta Metrologica Sinica, 2017, 38(2): 168-170.
[2]程银宝,陈晓怀,王汉斌,等.CMM尺寸测量的不确定度评定模型研究[J].计量学报,2016, 37(5): 462-466.
Cheng Y B, Chen X H, Wang H B, et al. Research on Uncertainty Estimation Model of CMM for Size Measurement[J]. Acta Metrologica Sinica, 2016, 37(5): 462-466.
[3]白小亮,卫尊义,冯娜,等.石油管齿形标准样板测量方法及测量不确定度评定[J].工具技术,2015,49(6):88-91.
Bai X L, Wei Z Y, Feng N, et al. Measurement Method of Thread Profile Gauge in Oil Tubular Goods and Its Uncertainty in Measurement [J]. Tool Engineering, 2015,49(6):88-91.
[4]凌明祥,李会敏,黎启胜,等.含相关性的测量不确定度拟蒙特卡罗评定方法[J].仪器仪表学报,2014,35(6):1385-1393.
Ling M X, Li H M, Li Q S, et al. Quasi Monte Carlo method for the measurement uncertainty evaluation considering correlation[J]. Chinese Journal of Scientific Instrument, 2014,35(6):1385-1393.
[5]郝晓剑,张根甫,昝清波.基于半导体激光器的热电偶时间常数测试系统及不确定度分析[J].激光与光电子学进展,2016,53(8):081408.
Hao X J, Zhang G F, Zan Q B. Thermocouple Time Constant Test System and Uncertainty Analysis Based on Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2016,53(8): 081408.
[6]唐艳林,杨洪耕.基于最大熵原理的敏感负荷电压暂降故障频次研究方法[J].电测与仪表,2015,52(18):27-30.
Tang Y L, Yang H G. Study on the fault frequency of sensitive load due to voltage sags based on maximum entropy principle[J]. Electrical Measurement & Instrumentation, 2015,52(18):27-30.
[7]姜瑞,陈晓怀,王汉斌,等.基于贝叶斯信息融合的测量不确定度评定与实时更新[J].计量学报,2017,38(1):123-126.
Jiang R, Chen X H, Wang H B, et al. Evaluation and Real Time Updating of Measurement Uncertainty Based on
Bayesian Information Fusion[J]. Acta Metrologica Sinica, 2017, 38(1): 123-126.
[8]吴福仙,温卫东.极大似然最大熵概率密度估计及其优化解法[J].南京航空航天大学学报,2017,49(1):110-116.
Wu F X, Wen W D. Estimation and Optimization of MLE Maximum Entropy Probability Density[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017,49(1):110-116.
[9]谌贝,龚鹏伟,谢文,等.最大熵原理在测量不确定度评定中的应用[J].宇航计测技术,2016,36(5):15-18.
Shen B, Gong P W, Xie W, et al. The Maximum Entropy Applied in the Evaluation of the Measurement Uncertainty [J]. Journal of Astronautic Metrology and Measurement, 2016,36(5):15-18.
[10]王惠娟,肖新平.基于最大熵原理的测量不确定度商概率建模及计算[J].数学的实践与认识,2016,46(13):201-207.
Wang H J, Xiao X P. Evaluation of Measurement Uncertainty in Quotient Probability Model Based on Maximum Entropy Principle[J]. Mathematics in Practice and Theory, 2016,46(13):201-207.