Thermodynamic Temperature Measurement Using Single Cylindrical Microwave Resonator
CUI Jin1,2,FENG Xiao-juan2,LIN Hong2,ZHANG Jin-tao2,HUAN Ke-wei1
1. College of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China
2. Division of Thermophysics and Process Measurements, National Institute of Metrology, Beijing 100029, China
Abstract:Using the microwave resonant method, the thermodynamic temperature is measured in the temperature range from 253 K to 303 K based on the gas refractive index primary thermometry by using the properties for argon from“ab initio”quantum mechanics calculation theory and experimental results and the microwave resonant method. Four transverse magnetic microwave resonance frequencies were measured to obtain the refractive index in argon at 700 kPa, the consistence of the refractive index from different microwave modes was better than 1×10-8. The thermodynamic temperature then was determined by combining the refractive index measurement results and the viral equation of state for argon. The uncertainty of the difference of the thermodynamic temperature T and the ITS-90 international temperature T90 was evaluated to be 11.6 mK, and the results agreed with the Consultative Committee for Thermometry (CCT) recommendation values well. The uncertainty from this method will be decreased with the development of the theoretical calculation for argon and the improvement of the pressure measurement in the next future.
[1]Fischer J, Ullrich J. The new system of units [J]. Nature Physics, 2016, 12(1):4-7.
[2]White D R, Fischer J. The Boltzmann constant and the new kelvin [J]. Metrologia, 2015, 52(5): S213-S216.
[3]Fischer J. Progress towards a new definition of the kelvin [J]. Metrologia, 2015, 52 (5) :S364-S375.
[4]段宇宁, 林鸿, 张金涛,等. 基准声学温度计的研究进展[J]. 计量学报, 2007, 28(3A): 1-6.
Duan Y N, Lin H, Zhang J T, et al. Review on the Primary acoustic gas thermometry [J]. Acta Metrologica Sinica, 2007,28(3A):1-6.
[5]付云丰, 屈继峰, 张建强,等. 噪声温度计中新型数字相关器设计 [J]. 计量学报, 2014, 35(4):335-338.
Fu Y F, Qu J F, Zhang J Q, et al. A new design of digital correlator for Johnson noise thermometry [J]. Acta Metrologica Sinica, 2014, 35(4):335-338.
[6]de Podesta M, Underwood R, Sutton G, et al. A low-uncertainty measurement of the Boltzmann constant [J]. Metrologia, 2013, 50(4): 354-376.
[7]Pitre L, Sparasci F, Risegari L, et al. New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas [J]. Metrologia, 2017, 54(6): 856-873.
[8]Gavioso R M, Madonna Ripa D, Steur P P M, et al. A determination of the molar gas constant R by acoustic thermometry in helium [J]. Metrologia, 2015, 52(5):S274-S304.
[9]Feng X J, Zhang J T, Lin H, et al. Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and previous results combined [J]. Metrologia, 2017, 54(5):748-762.
[10]Gaiser C, Fellmuth B, Haft N, et al.. Final determination of the Boltzmann constant by dielectric-constant gas thermometry [J]. Metrologia, 2017, 54(3): 280-289.
[11]Qu J F, Benz S P, Coakley K, et al. An improved electronic determination of the Boltzmann constant by Johnson noise thermometry [J]. Metrologia, 2017, 54(4): 549-558.
[12]谷学敏, 林鸿, 冯晓娟, 等. 定程圆柱声学基准温度计初步研究 [J]. 仪器仪表学报, 2013, 34(3): 502-508.
Gu X M, Lin H, Feng X J, et al. Preliminary study on the fixed-path-length cylinder primary acoustic thermometer [J]. Chinese Journal of Scientific Instrument, 2013, 34(3): 502-508.
[13]林鸿, 蔡杰, 冯晓娟, 等. 双圆柱微波谐振测量热力学温度的研究 [J]. 工程热物理学报, 2013, 34(6):1018-1021.
Lin H, Cai J, Feng X J, et al. Thermodynamic thermometry measurement based on microwave resonance at two Cylinders [J]. Journal of engineering thermal physics, 2013, 34(6):1018-1021.
[14]蔡杰,林鸿,冯晓娟,等. 圆柱共鸣腔力学特性模拟分析[J]. 计量学报, 2015, 36(2):141-144.
Cai J, Lin H, Feng X J, et al. Simulation and Analysis of the Mechanical Properties of Cylindrical Resonator[J]. Acta Metrologica Sinica, 2015, 36(2):141-144.
[15]Rourke P M C, Hill K D. Progress toward development of low-temperature microwave refractive index gas thermometry at NRC [J]. International Journal of Thermophysics, 2014, 36(2-3):205-228.
[16]Schmidt J W,Moldover M R. Dielectric permittivity of eight gases measured with cross capacitors [J]. International Journal of Thermophysics, 2003, 24(2):375-403.
[17]Barter C, Meisenheimer R G, Stevenson D P. Diamagnetic susceptibilities of simple hydrocarbons and volatile hydrides [J]. Journal of Physical Chemistry, 2002, 64(9):1 312-1 316.
[18]Zhang K, Feng X J, Zhang J T, et al. Microwave measurements of the length and thermal expansion of a cylindrical resonator for primary acoustic gas thermometry [J]. Measurement Science and Technology, 2017, 28(1):015006.
[19]鲍静, 冯晓娟, 林鸿, 等. 可变温的固体材料弹性参数测量系统研究[J]. 计量学报, 2015, 36(5):449-454.
Bao J, Feng X J, Zhang J T, et al. Study on the Setup for Measurement of Temperature-dependent Elastic Properties of Solids [J]. Acta Metrologica Sinica, 2015, 36(5):449-454.
[20]Huot J, Bose T K. Experimental determination of the dielectric virial coefficients of atomic gases as a function of temperature [J]. The Journal of Chemical Physics, 1991, 95(4): 2683-2687.
[21]Moldover M R, Gavioso R M, Mehl J B, et al. Acoustic gas thermometry [J]. Metrologia, 2014, 51(1):R1-R19.