2025年06月03日 星期二 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2018, Vol. 39 Issue (1): 125-129    DOI: 10.3969/j.issn.1000-1158.2018.01.26
  电离辐射、标准物质与生物计量 本期目录 | 过刊浏览 | 高级检索 |
基于混沌分组教与学优化算法锅炉NOx模型优化研究
马云鹏1,牛培峰1,陈科1,闫姗姗2,李国强1
1. 燕山大学 电气工程学院, 河北 秦皇岛 066004
2. 河北省桃林口水库管理局 水电厂, 河北 秦皇岛 066004
Optimize NOx Emissions Model of Boiler Based on Chaos Group Teaching-learning-based Optimization Algorithm
MA Yun-peng1,NIU Pei-feng1,CHEN Ke1,YAN Shan-shan2,LI Guo-qiang1
1. School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;
2. Hydropower Station of Administration of Taolinkou Reservoir of Hebei Province, Qinhuangdao, Hebei 066004, China
全文: PDF (814 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了平衡教与学优化算法的全局和局部搜索能力,提出一种混沌分组教与学优化算法。采用3种调整机制:应用混沌方法初始化种群个体;在教阶段成绩更新中引入自适应惯性权值;在学阶段,采用随机蛙跳算法思想,将班级中的学生分组,更新子种群的最差解。用10个经典的测试集函数测试改进算法的性能,并与人工蜂群算法、万有引力算法、原始的教学优化算法进行比较,结果显示:改进算法具有良好的全局和局部搜索能力,而且收敛精度高。此外,应用改进的教与学算法优化循环流化床锅炉氮氧化合物排放浓度的模型,仿真试验表明优化后的模型具有良好的辨识能力和泛化能力,能够指导工程,解决实际问题。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
马云鹏
牛培峰
陈科
闫姗姗
李国强
关键词 计量学氮氧化合物教与学优化算法混沌自适应随机蛙跳算法循环流化床锅炉    
Abstract:In order to balance the global and local search ability of the teaching-learning-based optimization, an enhanced teaching-learning-based optimization algorithm is proposed. The proposed algorithm adopts three major adjustment mechanisms. First, the chaos method is applied to initialize population. Second, a self-adaptive inertia weight is adopted to update the individual in teaching phase. Finally, in learning phase, the idea of shuffled leap frog algorithm is applied to group the individuals for updating the worst solution. Ten famous testing functions are applied to test the performance of the proposed algorithm, comparing with ABC, GSA and conventional TLBO. The experiment results show that the improved algorithm own better global and local search ability and high convergence precision. Simultaneously, the proposed algorithm is used to optimize the NOx emissions model of circulating fluidized bed boiler, the experiment result shows that the proposed algorithm possesse better identification ability and generalization, and it also can guide the practical project.
Key wordsmetrology    NOx    TLBO    chaos    self-adaptive    shuffled leap frog algorithm    circulating fluidized bed boiler
收稿日期: 2015-12-01      发布日期: 2017-12-29
PACS:  TB99  
基金资助:国家自然科学基金(61573306,61403331)
通讯作者: 牛培峰为本文通讯作者。niupeifeng2011@163.com     E-mail: npf882000@163.com
作者简介: 马云鹏(1989-),男,河北沧州人,燕山大学博士研究生,主要从事人工智能计算和神经网络的研究。18232362368@163.com
引用本文:   
马云鹏,牛培峰,陈科,闫姗姗,李国强. 基于混沌分组教与学优化算法锅炉NOx模型优化研究[J]. 计量学报, 2018, 39(1): 125-129.
MA Yun-peng,NIU Pei-feng,CHEN Ke,YAN Shan-shan,LI Guo-qiang. Optimize NOx Emissions Model of Boiler Based on Chaos Group Teaching-learning-based Optimization Algorithm. Acta Metrologica Sinica, 2018, 39(1): 125-129.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2018.01.26     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2018/V39/I1/125
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn