2025年06月02日 星期一 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2018, Vol. 39 Issue (3): 348-352    DOI: 10.3969/j.issn.1000-1158.2018.03.12
  光学计量 本期目录 | 过刊浏览 | 高级检索 |
基于多特征提取和SVM参数优化的车型识别
程淑红1,2,高许1,周斌1
1. 燕山大学 电气工程学院, 河北 秦皇岛 066004
2. 秦皇岛中信戴卡股份有限公司 博士后工作站, 河北 秦皇岛 066004
Vehicle Recognition Based on Multi-feature Extraction and SVM Parameter Optimization
CHENG Shu-hong1,2,GAO Xu1,ZHOU Bin1
1. College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. Postdoctoral Workstation of CITIC Dicastal Co., Ltd, Qinhuangdao, Hebei 066004, China
全文: PDF (619 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 提出了一种基于多特征提取和支持向量机(support vector machines,SVM)参数优化的车型识别方法,此方法解决了采用单一特征容易受到光照、天气、阴影等环境影响的问题,并且可以对运动中的车辆进行车型识别。首先,采集车辆样本并进行图像预处理,提取车辆的几何特征、纹理特征和方向梯度直方图(histogram of oriented gradient,HOG)特征;其次,将提取的多种特征量进行组合测试,并与单个特征量的测试结果进行比较;最后,采用粒子群算法优化SVM 的参数并使用优化的SVM参数进行运动车辆的车型识别。实验结果表明:提出的多特征提取和SVM参数优化相结合的车型识别方法能够取得很好的识别效果,识别率达到90%以上。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
程淑红
高许
周斌
关键词 计量学车型识别图像处理多特征提取支持向量机参数优化    
Abstract:A kind of vehicle recognition method which was based on multi-feature extraction and support vector machines(SVM) parameter optimization is proposeal. Many kinds of problems that used the single-feature can be influenced by those factors such as light, weather and shadow, etc. Those problems could be solved by our method. In addition, our method can identify the moving vehicle model. At first, the samples of vehicle are collected and begin the process of image preprocessing, a variety of features will be extracted, including geometric features, texture features and histogram of gradient features. The second, combining and testing the various features, then the results with the results of single-feature testing are compared. At last, preparing for the recognition of the vehicle by SVM which was optimized by Particle Swarm Optimization(PSO). The experimental results show that the method which is put forward can achieve a good recognition results. The recognition rate can reach more than 90%.
Key wordsmetrology    vehicle recongnition    image-processing    multi-feature extraction    support vector machines    parameter optimization
收稿日期: 2016-07-27      发布日期: 2018-04-12
PACS:  TB96  
  TP391.41  
基金资助:国家自然科学基金(61601400); 河北省博士后择优资助项目(B2016003027); 秦皇岛市科学技术研究与发展计划(201701B009)
通讯作者: 高许     E-mail: 243138810@qq.com
作者简介: 程淑红(1978-), 女, 河北沧州人, 燕山大学副教授, 博士, 主要从事视觉检测、图像处理及水质监测方面的研究。shhcheng@ysu.edu.cn
引用本文:   
程淑红,高许,周斌. 基于多特征提取和SVM参数优化的车型识别[J]. 计量学报, 2018, 39(3): 348-352.
CHENG Shu-hong,GAO Xu,ZHOU Bin. Vehicle Recognition Based on Multi-feature Extraction and SVM Parameter Optimization. Acta Metrologica Sinica, 2018, 39(3): 348-352.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2018.03.12     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2018/V39/I3/348
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn