Abstract:The creep errors of the piezoelectric ceramics have nonlinear change with the time, which is difficult to revise in real time. A creep prediction approach based on back propagation neural network is proposed for the piezoelectric ceramics. The data is collected by the piezoelectric ceramic driving system and normalized for prediction. The parameters of BP neural network including the number of hidden layers, the number of nodes in each hidden layer, the node transfer functions and the training function are designed by experiments. The prediction model of BP neural network is established, and the connection between the creep of the piezoelectric ceramic and the time is built. The creep of piezoelectric ceramics is predicted by the model of BP neural network, compared with the measured data, the results show that, using this prediction model the maximal absolute error is below 0.1 μm, the maximal creep error is below 0.6% and the maximal mean square error is 0.0021. So the BP neural network prediction model has a high prediction accuracy and can be applied to the creep prediction of the piezoelectric ceramics.
范伟,林瑜阳,李钟慎. 基于BP神经网络的压电陶瓷蠕变预测[J]. 计量学报, 2017, 38(4): 429-434.
FAN Wei,LIN Yu-yang,LI Zhong-shen. Prediction of the Creep of Piezoelectric Ceramic Based on BP Neural Network Optimized by Genetic Algorithm. Acta Metrologica Sinica, 2017, 38(4): 429-434.
[1]Rangasamy M. Nano technology: review[J]. Journal of Applied Pharmaceutical Science, 2011, 1(2): 8-16.
[2]何龙标,张瑞纹,祝海江,等.互易法校准压电型声发射传感器的研究与实现[J].计量学报,2014,35(5):479-483.
[3]Seo S Y, Yoo S S, Mishra D, et al. Exact piezoelectric solution for misfitted inclusion in finite spherical matrix: Applications to quantum dot core/shell crystals[J]. International Journal of Solids and Structures, 2016, 94: 158-169.
[4]张瑞纹,何龙标,祝海江,等.动态谐振法测量纵向压电应变常数的不确定性评定[J].计量学报,2015,36(4):344-347.
[5]范伟, 林瑜阳, 李钟慎. 压电陶瓷驱动器的迟滞特性[J].光学精密工程, 2016, 24(5): 1112-1117.
[6]Jung H, Gweon D G. Creep characteristics of piezoelectric actuators[J]. Review of Scientific Instruments, 2000, 71(4): 1896-1900.
[7]Richter H, Misawa E A, Lucca D A. et al.. Modeling nonlinear behavior in a piezoelectric actuator[J]. Precision Engineering, 2001, 25: 128-137.
[8]范伟,余晓芬.压电陶瓷驱动器蠕变特性的研究[J].仪器仪表学报,2006,27(11):1383-1386.
[9]刘泊,郭建英,孙永全.压电陶瓷微位移驱动器建模与控制[J].光学精密工程,2013,21(6):1503-1509.
[10]王岳宇,赵学增.补偿压电陶瓷迟滞和蠕变的逆控制算法[J].光学精密工程,2006,14(6):1032-1040.
[11]Zhao X L, Zhang C J, Liu H B, et al. Analysis of Hysteresis-free creep of the stack piezoelectric actuator[J]. Mathematical Problems in Engineering, 2013, 2013: ID 187262.
[12]张承进,赵学良,刘红波.堆叠型压电执行器的动态蠕变补偿[J].光学精密工程,2015,23(8):2273-2279.
[13]Qi C, Gao F, Li H X, et al. An incremental Hammerstein-like modeling approach for the decoupled creep, vibration and hysteresis dynamics of piezoelectric actuator[J]. Nonlinear Dynamics, 2015, 82(4):2097-2118.
[14]Li Y W, Li Y H, Li F X. Creep behavior of soft and hard PZT ceramics during mechanical loading and unloading[J]. Journal of the European Ceramic Society, 2015, 35(14): 3827-3834.
[15]Rakotondrabe M, Ivan I A, Khadraoui S, et al. Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2): 519-531.
[16]范伟.六自由度纳米工作台驱动控制方法及系统研究[D].安徽:合肥工业大学,2009.
[17]杨慎涛,刘文波. 基于粒子群的神经网络测试生成算法[J].计量学报,2015,36(2):197-201.
[18]Campanelli S L, Casalino G, Ludovico A D, et al. An artificial neural network approach for the control of the laser milling process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12): 1777-1784.
[19]夏克文,李昌彪,沈钧毅.前向神经网络隐含层节点数的一种优化算法[J].计算机科学,2005,32(10):143-145.