2025年04月06日 星期日 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2017, Vol. 38 Issue (4): 429-434    DOI: 10.3969/j.issn.1000-1158.2017.04.10
  力学计量 本期目录 | 过刊浏览 | 高级检索 |
基于BP神经网络的压电陶瓷蠕变预测
范伟,林瑜阳,李钟慎
华侨大学 机电及自动化学院, 福建 厦门 361021
Prediction of the Creep of Piezoelectric Ceramic Based on BP Neural Network Optimized by Genetic Algorithm
FAN Wei,LIN Yu-yang,LI Zhong-shen
College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
全文: PDF (1452 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 压电陶瓷驱动器的蠕变误差随时间呈现非线性变化,难以实时修正。提出基于BP神经网络的压电陶瓷蠕变预测方法,使用压电陶瓷驱动系统采集数据,对数据进行归一化处理,通过实验设计BP神经网络的隐含层数、隐含层节点数、节点转移函数和训练函数,构建BP神经网络预测模型,建立压电陶瓷蠕变与时间的关系。用BP神经网络模型对压电陶瓷蠕变进行了预测仿真,并将结果与实测数据进行了对比。结果表明,蠕变预测结果与实验数据的最大绝对误差均小于0.1 μm,最大蠕变误差均不超过0.6%,最大均方误差仅为0.0021,可见,BP预测模型具有较高的预测精度,可作为预测压电陶瓷蠕变误差的一种有效手段。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
范伟
林瑜阳
李钟慎
关键词 计量学压电陶瓷蠕变BP神经网络预测模型    
Abstract:The creep errors of the piezoelectric ceramics have nonlinear change with the time, which is difficult to revise in real time. A creep prediction approach based on back propagation neural network is proposed for the piezoelectric ceramics. The data is collected by the piezoelectric ceramic driving system and normalized for prediction. The parameters of BP neural network including the number of hidden layers, the number of nodes in each hidden layer, the node transfer functions and the training function are designed by experiments. The prediction model of BP neural network is established, and the connection between the creep of the piezoelectric ceramic and the time is built. The creep of piezoelectric ceramics is predicted by the model of BP neural network, compared with the measured data, the results show that, using this prediction model the maximal absolute error is below 0.1 μm, the maximal creep error is below 0.6% and the maximal mean square error is 0.0021. So the BP neural network prediction model has a high prediction accuracy and can be applied to the creep prediction of the piezoelectric ceramics.
Key wordsmetrology    piezoelectric ceramics    creep    BP neural network    prediction model
收稿日期: 2016-10-24      发布日期: 2017-06-16
PACS:  TB931  
基金资助:国家自然科学基金(51475176);福建省自然科学基金(2017J01086);中央高校基本科研业务费专项(JB-2R1159, JB-ZR1107);华侨大学研究生科研创新能力培育计划资助项目
通讯作者: 范伟     E-mail: fanwei@hqu.edu.cn
作者简介: 范伟(1980-),男,甘肃玉门人,华侨大学讲师,博士,主要从事精密测试技术及仪器的研究。fanwei@hqu.edu.cn
引用本文:   
范伟,林瑜阳,李钟慎. 基于BP神经网络的压电陶瓷蠕变预测[J]. 计量学报, 2017, 38(4): 429-434.
FAN Wei,LIN Yu-yang,LI Zhong-shen. Prediction of the Creep of Piezoelectric Ceramic Based on BP Neural Network Optimized by Genetic Algorithm. Acta Metrologica Sinica, 2017, 38(4): 429-434.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2017.04.10     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2017/V38/I4/429
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn