1. Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. College of Information Science and Engineering, Central South University, Changsha, Hunan 410006, China
Abstract:In order to avoid the shortcomings such as redundancy inputs, long prediction time and low prediction accuracy, which caused by more weather factors and information embedded each other, principal component analysis (PCA) is adopted to extract characteristics of weather factors which are taken as the modeling objects, together with the dates of historical load. Simultaneously, against the shortcoming of BP neural network under dynamic performance, short-term load forecasting model based on generalized regression neural network (GRNN) is established. Comparing with the traditional network model, the forecast to the actual power system load proved that, this method can improve the prediction accuracy and speed significantly and was more practical and effective.
[1]廖旎焕,胡智宏,马莹莹,等.电力系统短期负荷预测方法综述[J].电力系统保护与控制,2011,39(1):147-152.
[2]王玉田, 李长吾, 李艳春, 等. 基于小波神经网络的农药荧光光谱识别[J].计量学报,2008,29(1):84-86.
[3]刘荣,方鸽飞.改进Elman神经网络的综合气象短期负荷预测[J].电力系统保护与控制,2012,40(22):113-117.
[4]Adepoju G A, Ogunjuyigbe S O A, Alawode K O. Application of neural network to load forecasting in Nigerian electrical power system[J]. The Pacific Journal of Science and Technology, 2007, 8(1): 68-72.
[5]龚利,王云宽,宋英华,等.基于模糊神经网络的固体粉末自动配料控制系统[J].计量学报,2008,29(3):284-288.
[5]孙冠群,牛志钧 ,蔡慧,,等. 基于多目标进化算法的异步电动机现场效率测算[J].计量学报, 2015,36(1):87-91.
[6]李冬辉,王乐英,李晟.基于PCA的空调系统传感器故障诊断[J].电工技术学报,2008,23(6):130-136.
[7]赵丽红,张西礼,徐心和.基于二维对称主成分分析的人脸识别[J].仪器仪表学报,2008,29(6):1290-1294.
[8]周松林,茆美琴,苏建徽.基于主成分分析与人工神经网络的风电功率预测[J].电网技术,2011,35(9):128-132.
[9]Taylor J W. Short-term load forecasting with exponentially weighted methods[J]. IEEE Transactions on Power Systems, 2012, 27(1): 458-464.
[10]李龙,魏靖,黎灿兵,等.基于人工神经网络的负荷模型预测[J].电工技术学报,2015,30(8):225-230.
[11]黄欣,赵锦成,解璞.基于BP神经网络的电站负荷预测仿真研究[J].国外电子测量技术,2012,31(11):41-43.
[12]Amjady N, Keynia F. A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems[J]. Energies, 2011, 4(3): 488-503.
[13]戴虹,钱晋武,张震,等.GRNN在肌电预测踝关节运动中的应用[J].仪器仪表学报,2013,34(4):845-852.
[14]Alilou V K, Yaghmaee F. Application of GRNN Neural Network in Non-Texture Image Inpainting and Restoration[J]. Pattern Recognition Letters, 2015,62(1):24-31.