HE Shi-jun1,ZHANG Ting1,HE Hai-yang2,CHENG Xiao-long1,ZHOU Yuan-yuan1
1. College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
2. School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract:A new multi-weights normalization method based on the parallel normalization model is presented, and it considered the influences of the capacitances when the sensor is full of deference permittivity materials for the measured capacitance. The multi-weights model is suitable for two or more phase flow. The experimental results show that the RMSE of the image reconstruction accuracy based on the multi-weights model is 0.0044, better than that of parallel normalization model which is 0.0322 when more than two kinds of medium in the image reconstruction, so the multi-weights model can improve the image reconstruction accuracy effectively. Through the analysis of the reconstruction image show that it also can improve the sensitivity of the center field and reduce the imaging errors, which greatly improving the quality of reconstruction.
[1]Colombo M,Fairweather M. Multiphase turbulence in bubbly flows: RANS simulations[J]. International Journal of Multiphase Flow, 2015, 77:222-243.
[2]谭超,董峰.多相流过程参数检测技术综述[J].自动化学报,2013,39(11):1923-1932.
[3]Rzehak R , Kriebitzsch S. Multiphase CFD-simulation of bubbly pipe flow A code comparison[J]. International Journal of Multiphase Flow, 2015, 68: 135-152.
[4]王月明,油气水多相流流量电磁相关测量方法研究[D].秦皇岛:燕山大学,2013.
[5]王泽璞,吴迪,刘岩,等.基于电容层析成像多相流检测的动态重建算法研究[J].现代化工,2013, 33(3):106-111.
[6]Lei J, Qiu J H, Liu S. Dynamic reconstruction algorithm for electrical capacitance tomography based on the proper orthogonal decomposition[J]. Applied Mathematical Modelling, 2015, 39(22):6925-6940.
[7]何世钧.电容层析成像系统的研究与应用[D].天津:天津大学,2005.
[8]Liu X, Wang X X , Hu H L, et al. An extreme learning machine combined with Landweber iteration algorithm for the inverse problem of electrical capacitance tomography[J]. Flow Measurement and Instrumentation, 2015, 45(5): 348-356.
[9]郭志恒,邵富群.改进归一化方法对ECT重建图像质量的影响[J].沈阳工业大学学报,2013,35(4):432-437.
[10]张琳,邵富群,周明. 基于自适应步长双参数正则化算法的超声波过程层析成像图像重建[J].计量学报, 2015, 36(1): 48-53.
[11]Yang W Q, Peng L H. Image reconstruction algorithms for electrical capacitance tomography[J].Measurement Science & Technology,2003,14(1):R1-R13.
[12]Yang W Q, Byars M. An improved normalization approach for electrical capacitance tomography[C]// Proceedings of 1st World Congress on Industrial Process Tomography, Buxton,UK,1999.
[13]杨理践,颜华.电容层析成像系统测量数据的归一化处理[J].仪器仪表学报,2002,23(3):229-231.
[14]Dong X Y,Guo S Q.Image reconstruction method for electrical capacitance tomography based on the combined series and parallel normalization model[J].Measurement Science & Technology,2008,19(4): 334-340.
[15]Wang H G, Yang W Q. Measurement of fluidised bed dryer by different frequency and different normalisation methods with electrical capacitance tomography [J].Powder Technolog,2010,199(1):60-69.
[16]Mckeen T R, Pugsley T S. The influence of permittivity models on phantom images obtained from electrical capacitance tomography [J].Measurement Science & Technology,2002,13(12):1822-1830.
[17]张立峰,王化祥. 一种修正的电阻层析成像Landweber迭代算法[J].计量学报, 2016, 37(3): 271-274.
[18]李柳,邵富群,王占军.电磁层析成像中新型归一化算法的设计与实现[J].计量学报,2014, 35(1): 49-53.
[19]张立峰,田沛,马平,等.一种新的电容层析成像电容测量值归一化模型[J].中国电机工程学报,2011,31(17):86-90.
[20]郭志恒,律德才,邵富群.基于差分灵敏度模型的电容层析成像图像重建方法[J].中国电机工程学报,2012,32(23):75-82.