Research on Image Retrieval Based on Kernel Density Estimation and Fractal Coding Algorithm
ZHANG Qin1,2,LIN Qing-hua1,2,KANG Xin1,2
1. Putian University, Putian, Fujian 351100, China
2. Fujian Laser Precision Machining Engineering Technology Research Center, Putian, Fujian 351100, China
Abstract:To improve the application value of image retrieval technology based on image fractal coding, aiming at natural images, a robust index (rotation, translation, scaling invariance) extracted from fractal parameters is proposed and that is improved Hu invariant moment. The index is extracted from an approximate image constructed by mean range blocks. Then combines statistic characteristic of fractal parameters with the Hu invariant moment index, the weighed indices are employed to compare the similarities among images. The experimental results show that the weighted indices perform better than a separate index.
张琴,林清华,康新. 基于核密度估计和分形编码算法的图像检索技术研究[J]. 计量学报, 2017, 38(3): 284-287.
ZHANG Qin,LIN Qing-hua,KANG Xin. Research on Image Retrieval Based on Kernel Density Estimation and Fractal Coding Algorithm. Acta Metrologica Sinica, 2017, 38(3): 284-287.
[1] Akakin H C, Gurcan M N. Content-based microscopic image retrieval system for multi-image queries[J]. IEEE Transactions on Information Technology in Biomedicine A Publication of the IEEE Engineering in Medicine & Biology Society, 2012, 16(4):758-769.
[2] Jacquin A E. A novel fractal block-coding technique for digital images[C] // 1990 International Conference on Acoustics, Speech and Signal Processing. Albuquerque, NM, USA, 1990: 2225-2228.
[3]王志勇, 池哲儒, 余英林. 分形编码在图像检索中的应用[J]. 电子学报, 2000, 28(6):19-23.
[4]李洪均. 图像噪声方差大小的测量新算法[J]. 计量学报, 2012, 33(2):121-125.
[5]Kwitt R, Uhl A. Lightweight Probabilistic Texture Retrieval[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2010, 19(1):241-253.
[6]Leiva-Murillo J M, Artés-Rodríguez A. Algorithms for maximum-likelihood bandwidth selection in kernel density estimators[J]. Pattern Recognition Letters, 2012, 33(13):1717-1724.
[7]Deng B, Yu C Q, Li T S, et al. Dual-bandwidth kernel density estimation algorithm based on estimate points[J]. Chinese Journal of Scientific Instrument, 2011, 32(3):615-620.
[8]Shimazaki H, Shinomoto S. Kernel bandwidth optimization in spike rate estimation[J]. Journal Comput Neurosci, 2010, 29(1-2):171-182.
[9]朱奇光, 张兴家, 陈卫东, 等. 基于颜色矩的改进尺度不变特征变换的移动机器人定位算法[J]. 计量学报, 2016, 37(2): 118-122.
[10]王洪斌, 于菲, 李一骏, 等. 分块特征匹配与局部差分结合的运动目标检测[J]. 计量学报, 2015, 36(4): 352-355.
[11]Ma J Z, Chen X W, Zhong L J. Texture Image Retrieval System Based on Non-Subsampled Contourlet and Generalized Gaussian Density Model [C] // International Conference on Artificial Intelligence and Computational Intelligence(AICI), Sanya, China, 2010:181-185.