Abstract:In order to avoid the problem of excessive or inadequate iterations in flatness error assessement, 0.467 times the ratio of measurement uncertainty to step is used as termination condition. It is worthless of continuing approximate when search area is 0.467 times less than the ratio of measurement uncertainty to step. It is more scientific and reasonable than termination of time or iterations or fitness in the flatness error assessment.
王傲胜. 基于测量不确定度的平面度误差搜索范围研究[J]. 计量学报, 2017, 38(2): 168-170.
WANG Ao-sheng. Research on Search Area for Flatness Error Based on the Measurement Uncertainty. Acta Metrologica Sinica, 2017, 38(2): 168-170.
[1]Wang A S, Cao X R. The flatness assessment algorithm based on the linear filter[J].Advanced Materials Research, 2011, 268:2081-2086.
[2]Traband M T, Joshi S, Wysk R A, et al. Evaluation of straightness and flatness tolerances using the minimum zone[J].Manufacturing Review, 1989, 2(3):189-195.
[3]张之江,于瀛洁,张善钟.平面度误差最小区域新算法—有序判别法[J].计量学报, 1998, 19(1):15-21.
[4]岳武陵,吴勇.平面度和直线度误差的快速评定—增量算法[J].计量学报, 2008, 29(2):120-123.
[5]Samuel G L, Shunmugam M S. Evaluation of straightness and flatness error using computational geometric techniques[J].Computer Aided Design, 1999, 31(3):829-843.
[6]雷贤卿,李飞,涂鲜萍,等.评定平面度误差的几何搜索逼近算法[J].光学精密工程, 2013, 21(5):1312-1317.
[7]岳武陵, 吴勇, 苏俊.平面度误差的快速评定法—测点分类法[J].计量学报, 2007, 28(1): 29-33.
[8]罗钧,王强,付丽,等.改进蜂群算法在平面度误差评定中的应用[J].光学精密工程, 2012, 20(2):422-430.
[9]温秀兰, 宋爱国.改进遗传算法及其在平面度误差评定中的应用[J].应用科学学报, 2003, 21(3):221-224.
[10]温秀兰, 赵茜.基于进化策略的平面度误差评定[J].仪器仪表学报, 2007, 28(5):833-836.
[11]崔长彩, 张耕培, 傅师伟,等.利用粒子群优化算法的平面度误差评定[J].华侨大学学报(自然科学版), 2008, 29(4):507-509.
[12]王东霞, 温秀兰, 汪凤林,等.基于微分进化算法的平面度误差评定[J].组合机床与自动化加工技术, 2013, (12):18-20,24.