Virtual Measurement Method For Grid-Connected Inverter Parameters Based on Frequency Response
ZHENG Di1, HU Tianyu1, WANG Ying1, QIAN Lijuan1, SHAO Haiming2
1.College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2.National Institute of Metrology, Beijing 100029, China
Abstract:Aiming at the problem that most of the existing methods need to obtain internal electrical quantities of grid-connected inverter (GCI) to realize the measurement of control parameters, which imposes high demands on the testing conditions, a virtual measurement method for GCI parameters based on frequency response is proposed, which just applies disturbance and measures output currents at the common coupling point of the grid-connected inverter. Firstly, the operational principles and mathematical models of GCIs are analyzed, establishing corresponding transfer functions and obtained their frequency response characteristics. On this basis, an optimization model for virtual measurement of GCIs is constructed, and the particle swarm optimization is utilized to calculate the parameters that approximate the actual frequency response characteristics of the GCI. Simulation results indicate that, this algorithm realizes the virtual measurement of the control parameters of the inner loop, outer loop and phase-locked loop only by using the measurement information of the terminal voltage and current of the GCI, and the maximum error does not exceed 2.6%.
李鲁阳, 王方政, 陈磊, 等. 双馈风机对电网频率扰动的动态响应建模与分析[J]. 电力系统自动化, 2024, 48(9):75-85. LI L Y, WANG F Z, CHEN L, et al. Modeling and Analysis of Dynamic Response of Doubly Fed Wind Turbine to Grid Frequency Disturbance [J]. Automation of Electric Power Systems, 2024,48(9):75-85.
11
金宇清, 鞠萍, 刘伟航, 等. 基于量测信号扰动的DFIG变流器控制参数辨识方法[J]. 电力系统自动化, 2016, 40(8):36-42. JIN Y Q, JU P, LIU W H, et al. Parameter Identification Method for DFIG Converter Control Based on Measurement Signal Disturbance[J]. Automation of Electric Power Systems, 2016, 40(8):36-42.
5
李振垚, 摆世彬, 方若水, 等. 基于广域测量系统的双馈风力发电机组在线参数辨识方法[J]. 南方电网技术, 2021, 15(5): 89-97. LI Z Y, BAI S B, FANG R S, et al. Online Parameter Identification Method for Doubly Fed Wind Turbine Based on Wide Area Measurement System [J]. Southern Power System Technology, 2021, 15(5): 89-97.
15
ALATHAMNEH M, GHANAYEM H, YANG X Y, et al. Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method[J]. Energies, 2022, 15(19):7051.
7
王彤, 高明阳, 黄世楼, 等. 基于自适应容积卡尔曼滤波的双馈风力发电机动态状态估计[J]. 电网技术, 2021, 45(5): 1837-1845. WANG T, GAO M Y, HUANG S L, et al. Dynamic State Estimation of Doubly Fed Wind Turbine Based on Adaptive Cubature Kalman Filter[J]. Power System Technology, 2021, 45(5):1837-1845.
17
辛焕海, 李子恒, 董炜, 等. 三相变流器并网系统的广义阻抗及稳定判据[J]. 中国电机工程学报, 2017, 37(5):1277-1293. XIN H H, LI Z, DONG W, et al. Generalized Impedance and Stability Criteria for Three-Phase Inverter Grid-Connected Systems[J]. Proceedings of the Chinese Society for Electrical Engineering, 2017, 37(5):1277-1293.
4
JIN Y, LU C, JU P, et al. Probabilistic preassessment method of parameter identification accuracy with an application to identify the drive train parameters of DFIG [J]. IEEE transactions on power systems, 2020, 35(3):1769-1782.
14
NYUNT H T C, WIN T, TUN H M. Robust Performance Analysis on Dynamic Control of Unmanned Aerial Vehicle System Using Bode Plot[J]. American Journal of Astronomy and Astrophysics, 2019, 7(4):48-53
10
徐恒山, 李颜汝, 李文昊, 等. 融合寻优算法的双馈风力机控制参数分步辨识方法[J]. 太阳能学报, 2024,45(4):247-256. XU H S, LI Y R, LI W H, et al. Stepwise Identification Method for Control Parameters of Doubly Fed Wind Turbine Integrated with Optimization Algorithms[J]. Acta Energiae Solaris Sinica, 2024,45(4):247-256.
6
李立, 郑天悦, 黄世楼, 等. 基于扩展卡尔曼滤波的DFIG变流器控制系统参数辨识方法[J]. 电网与清洁能源, 2022, 38(12): 50-60. LI L, ZHENG T Y, HUANG S L, et al. Parameter Identification Method for DFIG Converter Control System Based on Extended Kalman Filter [J]. Power System and Clean Energy, 2022, 38(12): 50-60.
16
李诚帅, 吴振军, 谢伟, 等. 基于改进锁相环的新能源并网逆变器预测控制[J]. 电力电子技术, 2023, 57(5):69-71. LI C S, WU Z J, XIE W, et al. Predictive Control of New Energy Grid-Connected Inverter Based on Improved Phase-Locked Loop[J]. Electric Power Electronic Technology, 2023, 57(5):69-71.
8
徐岩, 靳伟佳, 朱晓荣. 基于遗传粒子群算法的光伏并网逆变器参数辨识 [J]. 太阳能学报, 2021, 42(7):103-109. XU Y, JIN W J, ZHU X R. Parameter Identification of Photovoltaic Grid-Connected Inverter Based on Genetic Particle Swarm Optimization Algorithm [J]. Acta Energiae Solaris Sinica, 2021, 42(7):103-109.
18
张立峰, 朱炎峰. 基于粒子群优化极限学习机及电容层析成像的两相流流型及其参数预测[J]. 计量学报, 2020, 41(12): 1488-1493. ZHANG L F, ZHU Y F. Prediction of Two-Phase Flow Patterns and Their Parameters Based on Particle Swarm Optimization Extreme Learning Machine and Electrical Capacitance Tomography [J]. Acta Metrologica Sinica, 2020, 41(12): 1488-1493.
9
王鹤.直驱发电系统模型参数智能辨识算法研究[D].吉林:东北电力大学, 2022.
19
张宝文, 江道灼, 王玉芬, 等. 基于改进PSO的带分布式电源配电网状态估计[J]. 能源工程, 2020(3): 17-205. ZHANG B W, JIANG D Z, WANG Y F, et al. State Estimation of Microgrid with Distributed Power Sources Based on Improved Particle Swarm Optimization[J]. Energy Engineering, 2020(3):17-20.
3
MIAO Z. Impedance-Model-Based SSR Analysis for Type 3 Wind Generator and Series-Compensated Network [J]. IEEE Transactions on Energy Conversion, 2012, 27(4): 984-991.
13
张焱, 吴志红, 朱元, 等. 基于准谐振与模型预测控制的永磁同步电机电流环控制策略[J]. 微特电机, 2023, 51(4): 57-61. ZHANG Y, WU Z H, ZHU Y, et al. Current Loop Control Strategy for Permanent Magnet Synchronous Motor Based on Quasi-Resonant and Model Predictive Control[J]. Micromotor, 2023, 51(4):57-61.
2
朱茂林, 刘灏, 毕天姝. 考虑风电场量测相关性的双馈风力发电机鲁棒动态状态估计[J]. 电工技术学报, 2023, 38(3): 726-740. ZHU M L, LIU H, BI T S. Robust Dynamic State Estimation of Doubly Fed Wind Turbine Considering Measurement Correlation in Wind Farms[J]. Proceedings of the CSEE, 2023, 38(3): 726-740
12
吴林林, 张家安, 刘东, 等. 基于降维聚类的双馈风力发电机参数辨识[J].可再生能源, 2021,39(12):1635-1640. WU L L, ZHANG J A, LIU D, et al. Parameter Identification of Doubly-Fed Wind Turbine Generator Based on Dimensionality Reduction and Clustering[J]. Renewable Energy, 2021, 39(12):1635-1640.