2025年06月03日 星期二 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2024, Vol. 45 Issue (4): 600-608    DOI: 10.3969/j.issn.1000-1158.2024.04.21
  电离辐射、化学计量与生物计量 本期目录 | 过刊浏览 | 高级检索 |
基于蜣螂优化-集成加权融合的NOx浓度动态预测
金秀章,畅晗,赵大勇,赵术善
华北电力大学 控制与计算机工程学院, 河北保定071003
Dynamic Prediction of NOx Concentration Based on Dung Beetle Optimization Ensemble Weighted Fusion
JIN Xiuzhang,CHANG Han,ZHAO Dayong,ZHAO Shushan
School of Control and Computer Engineering, North China Electric Power University, Baoding, Hebei 071003, China
全文: PDF (3110 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对SCR入口NOx浓度单一预测模型无法满足在不同工况下保持预测精度的问题,提出了一种基于蜣螂优化(dung beetle optimizer,DBO)集成模型加权融合的预测SCR入口NOx浓度的动态模型。首先使用CatBoost与LightGBM的混合模型在筛选辅助变量的同时,求取辅助变量的迟延时间和阶次信息,并根据以上信息确定预测模型的输入变量;然后建立由LightGBM,XGBoost与CatBoost组成的集成模型,并使用蜣螂优化算法对预测结果进行加权融合;最后将DBO-集成加权融合动态预测模型与3种单模型和蜣螂算法优化2种模型加权融合的预测模型进行对比。结果证明DBO综合加权融合动态预测模型的评价指标优于其他模型,具有更高的预测精度、实时性和适应性,能够更好地满足不同工况下的NOx浓度预测要求。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
金秀章
畅晗
赵大勇
赵术善
关键词 化学计量;NOx排放预测蜣螂优化算法CatBoostLightGBMXGBoost集成模型    
Abstract:Aiming at the problem that a single prediction model for SCR inlet NOx concentration could not maintain prediction accuracy under different operating conditions, a dynamic model for predicting SCR inlet NOx concentration based on weighted fusion of Dung Beetle Optimizer (DBO) ensemble model was proposed. Firstly, a hybrid model of CatBoost and LightGBM was used to filter auxiliary variables while obtaining the delay time and order information of the auxiliary variables, and the input variables of the prediction model were determined based on the above information. Then, an integrated model consisting of LightGBM,XGBoost, and CatBoost was established, and the prediction results were weighted and fused using the dung beetle optimization algorithm. Finally, the DBO integrated weighted fusion dynamic prediction model was compared with three single models and the two weighted fusion prediction models optimized by the dung beetle algorithm. The evaluation indicators of the DBO integrated weighted fusion dynamic prediction model were superior to other models, with higher prediction accuracy, real-time performance, and adaptability, which could better meet the requirements of NOx concentration prediction under different working conditions.
Key wordsstoichiometry;NOx emission prediction    dung beetle optimization algorithm    CatBoost    LightGBM;XGBoost    Integrated model
收稿日期: 2023-09-11      发布日期: 2024-04-03
PACS:  TB99  
作者简介: 金秀章(1969- )男, 河北保定人, 华北电力大学副教授, 主要从事先进控制策略在大型电力机组上应用方面的研究。Email: jinxzsys@163.com
引用本文:   
金秀章,畅晗,赵大勇,赵术善. 基于蜣螂优化-集成加权融合的NOx浓度动态预测[J]. 计量学报, 2024, 45(4): 600-608.
JIN Xiuzhang,CHANG Han,ZHAO Dayong,ZHAO Shushan. Dynamic Prediction of NOx Concentration Based on Dung Beetle Optimization Ensemble Weighted Fusion. Acta Metrologica Sinica, 2024, 45(4): 600-608.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2024.04.21     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2024/V45/I4/600
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn