2025年05月12日 星期一 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2024, Vol. 45 Issue (12): 1772-1779    DOI: 10.3969/j.issn.1000-1158.2024.12.04
  光学计量 本期目录 | 过刊浏览 | 高级检索 |
基于无人机航拍视频车辆多目标跟踪算法研究
朱奇光1,2,商健1,刘博1,岑强1,陈卫东1,2
1.燕山大学信息科学与工程学院,河北秦皇岛066004
2.河北省特种光纤与光纤传感重点实验室,河北秦皇岛066004
Research on Vehicle Multi-target Tracking Algorithm Based on UAV Aerial Video
ZHU Qiguang1,2,SHANG Jian1,LIU Bo1,CEN Qiang1,CHEN Weidong1,2
1.School of Information Science and Engineering,Yanshan University, Qinhuangdao, Hebei 066004,China
2.Hebei Provincial Key Laboratory of Special Optical Fibers and Fiber Optic Sensing, Qinhuangdao, Hebei 066004, China
全文: PDF (757 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了提高无人机视觉平台下的车辆多目标跟踪精度,提出了一种改进YOLOv7网络与优化ByteTrack算法相结合的无人机视觉车辆多目标跟踪算法。首先,针对小目标特征不明显的情况,增强了YOLOv7网络浅层语义信息的特征提取能力,同时采用SIoU-Loss对坐标损失函数进行优化,加快锚框收敛速度;其次,根据车辆运动特点,在ByteTrack算法的基础上,将卡尔曼滤波算法的状态向量融入加速度信息;最后,在VisDrone2021数据集上验证算法的有效性。实验结果表明:改进YOLOv7网络的平均检测精度比原网络提高3.2%,跟踪算法准确度比基准算法提高1.2%,高阶跟踪精度提高2.9%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱奇光
商健
刘博
岑强
陈卫东
关键词 计算机视觉;图像处理多目标跟踪无人机YOLOv7网络ByteTrack算法车辆检测    
Abstract:In order to improve the vehicle multi-target tracking accuracy under the UAV vision platform, a UAV visual vehicle multi-target tracking algorithm that combines the improved YOLOv7 network with the optimized ByteTrack algorithm is proposed. Firstly, in view of the situation where the features of small targets are not obvious, the feature extraction ability of shallow semantic information of the YOLOv7 network is enhanced, and SIoU-Loss is used to optimize the coordinate loss function to speed up the convergence speed of the anchor frame.secondly, according to the vehicle motion characteristics, in based on the ByteTrack algorithm, the state vector of the Kalman filter algorithm is integrated into the acceleration information. finally, the effectiveness of the algorithm is verified on the VisDrone2021 data set. The experimental results indicate that the average detection accuracy of the improved YOLOv7 network is 3.2% higher than the original network, the accuracy of the tracking algorithm is 1.2% higher than the baseline algorithm, and the high-order tracking accuracy is improved by 2.9%.
Key wordscomputer vision    image processing    multi-target tracking;unmanned aerial vehicle    YOLOv7 network    ByteTrack algorithm    vehicle detection
收稿日期: 2023-11-28      发布日期: 2024-12-18
PACS:  TB96  
基金资助:国家自然科学基金 (61773333, 62273296)
通讯作者: 陈卫东(1971-),吉林长春人,燕山大学教授,主要从事机器人控制、深度学习算法及应用的研究。Email:wdchen@ysu.edu.cn     E-mail: zhu7880@ysu.edu.cn
作者简介: 朱奇光(1978-),浙江宁波人,燕山大学副教授,主要从事机器视觉、智能机器检测与控制方面的研究。Email:zhu7880@ysu.edu.cn
引用本文:   
朱奇光,商健,刘博,岑强,陈卫东. 基于无人机航拍视频车辆多目标跟踪算法研究[J]. 计量学报, 2024, 45(12): 1772-1779.
ZHU Qiguang,SHANG Jian,LIU Bo,CEN Qiang,CHEN Weidong. Research on Vehicle Multi-target Tracking Algorithm Based on UAV Aerial Video. Acta Metrologica Sinica, 2024, 45(12): 1772-1779.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2024.12.04     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2024/V45/I12/1772
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn