2025年04月14日 星期一 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2024, Vol. 45 Issue (10): 1487-1493    DOI: 10.3969/j.issn.1000-1158.2024.10.08
  光学计量 本期目录 | 过刊浏览 | 高级检索 |
基于改进YOLOv8n的无人机目标检测算法研究
张立国,袁煜淋,金梅,张琦,吴文哲
燕山大学电气工程学院,河北秦皇岛066004
Research on UAV Target Detection Algorithm Based on Improved YOLOv8n
ZHANG Liguo,YUAN Yulin,JIN Mei,ZHANG Qi,WU Wenzhe
School of Electrical Engineering,Yanshan University, Qinhuangdao, Hebei 066004, China
全文: PDF (637 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对低空无人机目标的误检漏检等问题,提出改进YOLOv8n的算法模型ASSM-YOLO。首先,添加小目标检测头并使用AFPN替换原有Neck结构,渐近融合低层与高层特征;其次,引入SA注意力机制增强对无人机目标的感知能力;再次,将主干网络卷积层替换为SPD-Conv,改善卷积过程中特征丢失问题;最后,替换损失函数MPDIoU Loss,优化回归损失计算。在DUT-UAV数据集上的实验表明:ASSM-YOLO算法的平均精度值RmAP@0.5、RmAP@0.75和RmAP@0.5∶0.95结果为92.5%、72.2%和62.9%,较原YOLOv8n网络分别提升了5.9%、8.3%和6.5%,显著提升了无人机目标的检测精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张立国
袁煜淋
金梅
张琦
吴文哲
关键词 机器视觉YOLOv8nAFPNSA注意力SPD-ConvMPD损失函数    
Abstract:To address the problems such as misdetection and omission of low-altitude UAV targets, the algorithmic model ASSM-YOLO for improving YOLOv8n is proposed. Firstly, a small target detection head is added and the original Neck structure is replaced using asymptotic feature pyramid network (AFPN), which asymptotically fuses low-level and high-level features. Second, the shuffle attention (SA) mechanism is introduced to enhance the perception of UAV targets. Again, the backbone network convolutional layer is replaced with space to depth convolution (SPD-Conv) to improve the feature loss problem in the convolution process. Finally, the loss function MPDIoU Loss is replaced to optimise the regression loss calculation. Experiments on the DUT-UAV dataset show that the ASSM-YOLO algorithm results in 92.5%, 72.2%, and 62.9% on the RmAP@0.5、RmAP@0.75 and RmAP@0.5:0.95 metrics, which are 5.9%, 8.3%, and 6.5% respectively compared to YOLOv8n, so significantly improves the detection accuracy of the UAV targets.
Key wordsmachine vision    YOLOv8n    AFPN    SA attention    SPD-Conv    MPD loss
收稿日期: 2024-03-22      发布日期: 2024-09-30
PACS:  TB96  
基金资助:国家重点研发计划(2020YFB1711001);河北省军民融合产业发展专项(2018B190)
通讯作者: 袁煜淋(1999 -),男,江苏连云港人,燕山大学在读研究生,主要研究方向为计算机视觉与FPGA。Email: yyl_bear1999@163.com     E-mail: yyl_bear1999@163.com
作者简介: 张立国(1978-),男,河北秦皇岛人,燕山大学副教授,主要从事计算机视觉、图像处理、智慧工厂研究。Email: zlgtime@163.com
引用本文:   
张立国,袁煜淋,金梅,张琦,吴文哲. 基于改进YOLOv8n的无人机目标检测算法研究[J]. 计量学报, 2024, 45(10): 1487-1493.
ZHANG Liguo,YUAN Yulin,JIN Mei,ZHANG Qi,WU Wenzhe. Research on UAV Target Detection Algorithm Based on Improved YOLOv8n. Acta Metrologica Sinica, 2024, 45(10): 1487-1493.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2024.10.08     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2024/V45/I10/1487
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn