Research Progress on Metrological Evaluation Methods for Sampling Efficiency of Bioaerosol Samplers
LIU Wen-cheng1,2,FU Bo-qiang1,2,LIU Nai-yu2,3,LI Man-li2,NIU Chun-yan2,WANG Jing2,WU Yi-hang1,LI Ru3,CHENG Huan4
1. College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China
3. School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Shaanxi, Xi’an 710600, China
4. Facilities and Support Center, Academy of Military Medical Sciences, Beijing 100850, China
Abstract:The collection, identification and concentration monitoring of microorganisms in bioaerosols are important steps for assessing the risk of bioaerosols. The effective collection of living microbial particles in aerosols by bioaerosol samplers is the precondition for bioaerosol risk factor analysis. Many metrology researchers began to pay more attention to the metrological evaluation methods for bioaerosol sampling efficiency. The different methods for the performance evaluation of sampling physical efficiency and sampling biological efficiency of bioaerosol samplers are reviewed, in order to provide reference for methodological harmonization and standardization of the evaluation method.
Jones R M, Brosseau L M. Aerosol transmission of infectious disease [J]. Journal of occupational and environmental medicine, 2015, 57 (5): 501-508.
[3]
Tellier R, Li Y, Cowling B J, et al. Recognition of aerosol transmission of infectious agents: a commentary [J]. BMC infectious diseases, 2019, 19 (1): 1-9.
[17]
Kenny L C. Developments in workplace aerosol sampling. A review [J]. Analyst, 1996, 121 (9): 1233-1239.
[25]
JJF 1826-2020, 空气微生物采样器校准规范[S]. 2020.
[5]
Gollakota A R K, Gautam S, Santosh M, et al. Bioaerosols: Characterization, pathways, sampling strategies, and challenges to geo-environment and health [J]. Gondwana Research, 2021, 99 (4): 178-203.
Ni X P, Xing Y B, Suo J J, et al. Characteristics and effects of microbial aerosols in healthcare settings [J]. Chinese Journal of Nosocomiology, 2020, 30 (8): 1183-1190.
[8]
Kirtipal N, Bharadwaj S, Kang S G. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses [J]. Infection, Genetics and Evolution, 2020, 85 (4): 1-15.
[9]
Yuen K S, Ye Z W, Fung S Y, et al. SARS-CoV-2 and COVID-19: The most important research questions [J]. Cell & bioscience, 2020, 10 (1): 1-5.
Wu Y, Wang X C, Wang B, et al. Research advances of aerosol sampling technology for airborne influenza virus [J]. Chinese Journal of Health Laboratory Technology, 2019, 29 (11): 1406-1408.
[11]
Dungan R S, Leytem A B. Recovery of culturable Escherichia coli O157: H7 during operation of a liquid-based bioaerosol sampler [J]. Aerosol Science and Technology, 2016, 50 (1): 71-75.
[14]
Jensen P A, Todd W F, Davis G N, et al. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria [J]. American Industrial Hygiene Association Journal, 1992, 53 (10): 660-667.
[15]
Mainelis G, Tabayoyong M. The effect of sampling time on the overall performance of portable microbial impactors [J]. Aerosol Science and Technology, 2010, 44 (1): 75-82.
[2]
Frhlich-Nowoisky J, Kampf C J, Weber B, et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions [J]. Atmospheric Research, 2016, 182 (23): 346-376.
Chang L S, Li R, Li Q, et al. Sampling methods and inhalation hazards of bioaerosol: research advances [J]. Military Medical Sciences, 2020, 44 (11): 860-864.
[6]
Després V R, Huffman J A, Burrows S M, et al. Primary biological aerosol particles in the atmosphere: a review [J]. Tellus B: Chemical and Physical Meteorology, 2012, 64 (1): 1-5.
Haig C W, Mackay W G, Walker J T, et al. Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies [J]. Journal of Hospital Infection, 2016, 93 (3): 242-255.
Yang B L, Wang X Y, Li X W, et al. Collection methods and research advances of microbial aerosols [J]. Chinese Journal of Disinfection, 2017, 34 (12): 1174-1177.
[18]
Zhou J, Wu J, Zeng X Q, et al. Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015[J]. Eurosurveillance, 2016, 21 (35): 1-14.
Li T. Sampling of microbes in the air and its developing tendency [J]. Chinese Journal of Health Laboratory Technology, 2003, 13 (5): 538-539.
[26]
GB/T 39990-2021, 颗粒—生物气溶胶采样器—技术条件[S]. 2021.
[16]
Xu Z, Wei K, Wu Y, et al. Enhancing bioaerosol sampling by Andersen impactors using mineral-oil-spread agar plate[J]. PLoS One, 2013, 8 (2): 1-10.
[19]
Blachere F M, Lindsley W G, Slaven J E, et al. Bioaerosol sampling for the detection of aerosolized influenza virus [J]. Influenza and other respiratory viruses, 2007, 1 (3): 113-120.
[22]
Yao M S, Mainelis G. Utilization of natural electrical charges on airborne microorganisms for their collection by electrostatic means [J]. Journal of aerosol science, 2006, 37 (4): 513-527.
Zhang H L, Zhen S Q, Zhou M H, et al. Research Progress on Sampling Technology of Bioaerosol[J]. The Administration and Technique of Environmental Monitoring, 2011, 23 (4): 18-21.
[24]
Haig C W, Mackay W G, Walker J T, et al. Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies [J]. Journal of Hospital Infection, 2016, 93 (3): 242-255.
[27]
An H R, Mainelis G, Yao M. Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments [J]. Indoor air, 2004, 14 (6): 385-393.
Liu J Q, Zhang G C, Wu D, et al. Study on Evaluation Method of Acquisition Efficiency ofAnderson Six-stage lmpact Sampler [J]. Acta Metrologica Sinica, 2022, 43 (6): 825-829.
Du Y Y, Xu Y Z, Zheng C, et al. Experimental Study of C.albicans-aerosols collection with a novel Electrostatic Sampler [C]. Proceedings of the twentieth National Academic Conference of electrostatic of China Physical Society, China, 2015.
[33]
Dybwad M, Skogan G, Blatny J M. Comparative testing and evaluation of nine different air samplers: end-to-end sampling efficiencies as specific performance measurements for bioaerosol applications [J]. Aerosol Science and Technology, 2014, 48 (3): 282-295.
[34]
Zhao Y, Aarnink A J A, Doornenbal P, et al. Investigation of the efficiencies of bioaerosol samplers for collecting aerosolized bacteria using a fluorescent tracer. II: sampling efficiency and half-life time [J]. Aerosol Science and Technology, 2011, 45 (3): 432-442.
[37]
Verreault D, Moineau S, Duchaine C. Methods for sampling of airborne viruses [J]. Microbiology and molecular biology reviews, 2008, 72 (3): 413-444.
[40]
Pogner C, Konlechner A, Unterwurzacher V, et al. A novel laminar-flow-based bioaerosol test system to determine biological sampling efficiencies of bioaerosol samplers [J]. Aerosol Science and Technology, 2019, 53 (4): 355-370.
[21]
Zhen S Q, Li K J, Yin L H, et al. A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) High Flow for measuring airborne bacteria and fungi concentrations [J]. Journal of aerosol science, 2009, 40 (6): 503-513.
[29]
Kesavan J, Sagripanti J L. Evaluation criteria for bioaerosol samplers [J]. Environmental Science: Processes & Impacts, 2015, 17 (3): 638-645.
Yang W H, Wen Z B, Yu L, et al. Evaluation of the sampling efficiency of bioareosol samplers by the areosol generating method [J]. Chinese Journal of Disinfection, 2009, 26 (3): 245-248.
Guo J S, Cheng P B, Lv M, et al. Design and performance of a high flow rate wet wall cyclone bioaerosol sampler[J]. Chinese Journal of Disinfection, 2022, 39 (6): 401-406.
[38]
Tseng C C, Hsiao P K, Chang K C, et al. Optimization of propidium monoazide quantitative PCR for evaluating performances of bioaerosol samplers for sampling airborne Staphylococcus aureus [J]. Aerosol Science and Technology, 2014, 48 (12): 1308-1319.
[32]
Tolchinsky A D, Sigaev V I, Varfolomeev A N, et al. Performance evaluation of two personal bioaerosol samplers [J]. Journal of Environmental Science and Health, Part A, 2011, 46 (14): 1690-1698.
[35]
Han T, Nazarenko Y, Lioy PJ, Mainelis G. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols [J]. Indoor Air. 2011, 21 (2): 110-120.
[39]
Fittipaldi M, Nocker A, Codony F. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification [J]. Journal of microbiological methods, 2012, 91 (2): 276-289.